IDWeek 2019 | Poster #1598

Antimicrobial Activity of the Novel β-Lactam Enhancer Combination Cefepime-Zidebactam (WCK 5222) Tested against Gram-Negative Bacteria Isolated in United States Medical Centers from Patients with Bloodstream Infections

Mariana Castanheira, Michael D. Huband, Robert K. Flamm, Helio S. Sader JMI Laboratories, North Liberty, Iowa, USA

Introduction

- Zidebactam, a bicyclo-acyl hydrazide ($C_{13}H_{21}N_5O_7S$), is a non- β -lactam agent with a dual mechanism of action involving selective and high-affinity Gramnegative penicillin-binding-protein (PBP) 2 binding and β -lactamase inhibition
- Due to PBP2 binding, zidebactam demonstrates antibacterial activity against various *Enterobacterales* isolates and non-fermentative Gram-negative bacilli (NF-GNB)
- Clinical indications currently approved by the United States (US) Food and Drug Administration for treatment with cefepime include moderate to severe pneumonia, complicated and uncomplicated urinary tract infections, complicated intra-abdominal infections, and uncomplicated skin and skin structure infections, as well as empiric therapy for febrile neutropenic patients
- Cefepime-zidebactam is in clinical development at 2g/1g q8 hours as a 60-minute infusion dosage
- In vivo lung and thigh infection studies employing cefepime-zidebactam human-simulated regimens in neutropenic mice have demonstrated 2-3 log kill of multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii and P. aeruginosa with cefepime-zidebactam MICs up to 64 mg/L and 32 mg/L, respectively
- We evaluated the activity of cefepime combined with zidebactam against contemporary clinical isolates of GNB causing bloodstream infections (BSIs) in US hospitals

Materials and Methods

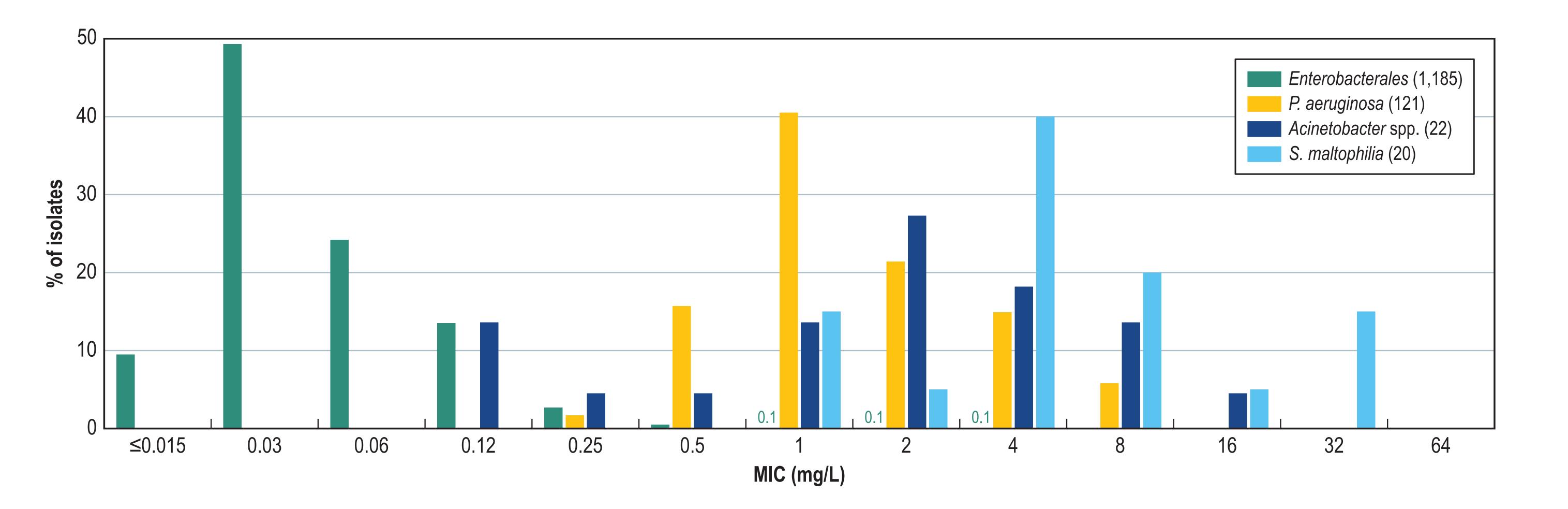
- A total of 1,348 clinical isolates of GNB were consecutively collected from patients with BSIs (1/patient) in 34 US medical centers in 2018 by the SENTRY Antimicrobial Surveillance Program
- The isolates were susceptibility tested against cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam (avibactam at fixed 4 mg/L), ceftolozane-tazobactam (tazobactam at fixed 4 mg/L), and other comparator agents by the reference broth microdilution method
- The cefepime susceptible (S) breakpoint of ≤8 mg/L (Clinical and Laboratory Standards Institute [CLSI], high dose) was applied for cefepime-zidebactam for comparison purposes only, and also a cefepime-zidebactam susceptible breakpoint of ≤64 mg/L proposed on the basis of pharmacokinetic/ pharmacodynamic target attainment, and *in vivo* efficacy employing humansimulated regimen was applied
- CLSI breakpoints were applied for comparators, when available
- Carbapenem-resistant Enterobacterales (CRE) was defined as resistant per CLSI criteria to meropenem, imipenem, or doripenem (imipenem was not applied to Proteus mirabilis or indole-positive Proteeae)

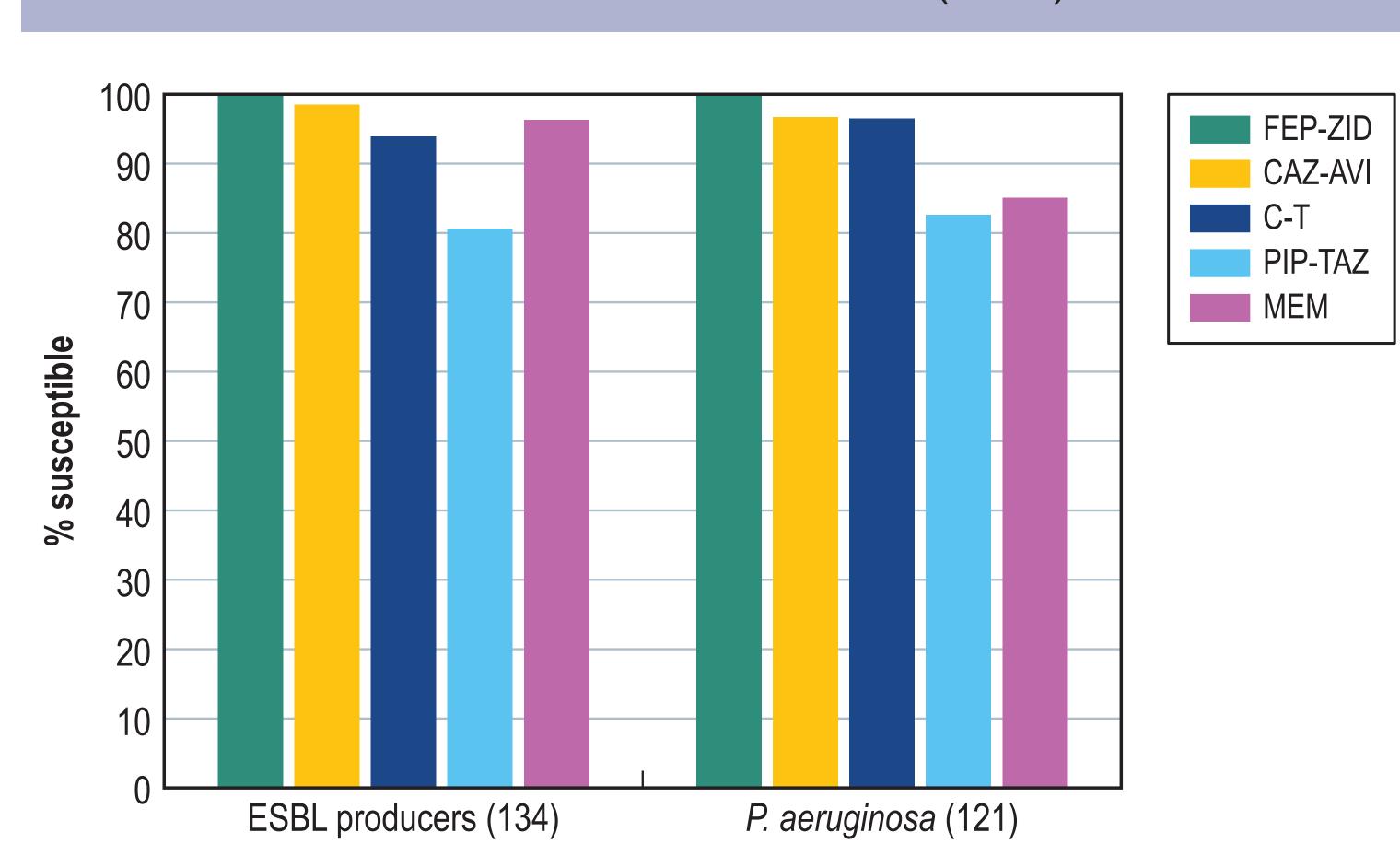
- MDR and XDR Enterobacterales strains were classified according to recommended guidelines (Magiorakos et al., 2012) as follows
 - MDR: Not susceptible to 3 or more drug classes (CLSI)
 - XDR: Susceptible to only 2 or fewer classes (CLSI)
- All CRE isolates were evaluated by next-generation sequencing

Results

- Cefepime-zidebactam was the most active agent against *Enterobacterales* (MIC $_{50/90}$, 0.03/0.12 mg/L; highest MIC, 4 mg/L; Table 1 and Figure 1), including MDR (MIC $_{50/90}$, 0.12/0.25 mg/L; Table 1) and CRE isolates (n=7; MIC $_{50}$, 0.5 mg/L; data not shown)
- The most active comparators tested against MDR *Enterobacterales* were ceftazidime-avibactam (MIC $_{50/90}$, 0.25/1 mg/L; 98.0%S), meropenem (MIC $_{50/90}$, 0.03/0.12 mg/L; 92.1%S), and amikacin (MIC $_{50/90}$, 4/16 mg/L; 92.1%S), whereas ceftolozane-tazobactam (MIC $_{50/90}$, 0.5/>16 mg/L) was active against 81.8% of isolates (Table 1)
- The most common ESBLs produced by *Enterobacterales* were CTX-M-15 (88 isolates; 65.7% of ESBL producers), followed by OXA-1/30 (59 isolates; 44.0%) and CTX-M-27 (19 isolates; 14.2%); 53 isolates (38.8%) produced CTX-M-15 and OXA-1/30 (data not shown)
- The most active agents against ESBL-producing *Enterobacterales* (n=134) were cefepime-zidebactam (MIC $_{50/90}$, 0.12/0.25 mg/L; highest MIC, 1 mg/L), ceftazidime-avibactam (MIC $_{50/90}$, 0.12/0.5 mg/L; 98.5%S), and meropenem (MIC $_{50/90}$, 0.03/0.06 mg/L; 96.3%S; Figure 2)
- The highest cefepime-zidebactam MIC values among *E. coli*, *K. pneumoniae*, and *E. cloacae* were 1, 2, and 0.25 mg/L, respectively (data not shown)
- The most active agents tested against *P. aeruginosa* were cefepime-zidebactam (MIC $_{50/90}$, 1/4 mg/L; highest MIC, 8 mg/L), colistin (MIC $_{50/90}$, 0.5/1 mg/L; 100.0%S), and amikacin (MIC $_{50/90}$, 4/8 mg/L; 99.2%S), whereas ceftazidime-avibactam and ceftolozane-tazobactam were active against 96.5%-96.7% of isolates (Table 1 and Figures 1 and 2)
- Against *P. aeruginosa* isolates not susceptible to meropenem (n=18), cefepime-zidebactam MIC values ranged from 1 to 8 mg/L (MIC $_{50/90}$, 4/8 mg/L), whereas ceftazidime-avibactam (MIC $_{50/90}$, 4/32 mg/L) and ceftolozane-tazobactam (MIC $_{50/90}$, 2/8 mg/L) were active against 77.8% and 81.2% of isolates, respectively
- Cefepime-zidebactam exhibited good activity against *Acinetobacter* spp. (n=22; $MIC_{50/90}$, 2/8 mg/L; 95.5% and 100.0% inhibited at \leq 8 and \leq 16 mg/L, respectively) and *S. maltophilia* (n=20; $MIC_{50/90}$, 4/32 mg/L; 80.0% and 100.0% inhibited at \leq 8 and \leq 32 mg/L, respectively; Figure 2)

Figure 1 Cefepime-zidebactam activity against Gram-negative bacilli isolated from patients with bloodstream infections in US medical centers (2018)




Table 1 Antimicrobial susceptibility of *Enterobacterales* and *P. aeruginosa* isolates from patients with bloodstream infections from US medical centers in 2018

Antimicrobial agent	MIC ₅₀	MIC ₉₀	CLSI	
			% S	%R
Enterobacterales (1,185)				
Cefepime-zidebactam	0.03	0.12	[100.0] ^b	
Ceftazidime-avibactam	0.12	0.25	99.8	0.2
Ceftolozane-tazobactam	0.25	1	97.1	2.3
Piperacillin-tazobactam	2	8	94.0	3.0
Ceftriaxone	≤0.06	>8	83.9	15.4
Meropenem	0.03	0.06	99.3	0.6
Levofloxacin	0.06	16	75.1	22.8
Amikacin	2	4	99.3	0.3
MDR Enterobacterales (101)				
Cefepime-zidebactam	0.12	0.25	[100.0] ^b	0.0
Ceftazidime-avibactam	0.25	1	98.0	2.0
Ceftolozane-tazobactam	0.5	>16	81.8	13.6
Piperacillin-tazobactam	8	>128	64.4	15.8
Ceftriaxone	>8	>8	12.9	84.2
Meropenem	0.03	0.12	92.1	6.9
Levofloxacin	8	>32	13.0	80.0
Amikacin	4	16	92.1	4.0
P. aeruginosa (121)				
Cefepime-zidebactam	1	4	[100.0] ^b	0.0
Ceftazidime-avibactam	2	4	96.7	3.3
Ceftolozane-tazobactam	0.5	2	96.5	1.8
Piperacillin-tazobactam	4	64	82.6	8.3
Ceftazidime	2	32	85.1	12.4
Meropenem	0.5	4	85.1	9.9
Levofloxacin	0.5	8	70.2	19.0
Tobramycin	0.5	1	98.3	0.8
Amikacin	4	8	99.2	0.0
Colistin	0.5	1	100.0	0.0
MDR, multidrug-resistant				

eria as published by CLSI (2019).

Organism/organism group (no. of isolates)

Figure 2 Antimicrobial susceptibility of ESBL-producing Enterobacterales and P. aeruginosa isolated from patients with bloodstream infections in US medical centers (2018)

Abbreviations: ESBL producers, *Enterobacterales* producing extended-spectrum β-lactamase; FEP-ZID, cefepime-zidebactam (% inhibited at ≤8 r CAZ-AVI, ceftazidime-avibactam; C-T, ceftolozane-tazobactam; PIP-TAZ, piperacillin-tazobactam; MEM, meropenem.

Conclusions

- Cefepime-zidebactam showed complete activity against *Enterobacterales* and *P. aeruginosa* with 100.0% of isolates inhibited at ≤ 8 mg/L
- Cefepime-zidebactam was slightly more active than ceftazidime-avibactam and ceftolozane-tazobactam against P. aeruginosa overall and retained 100.0% susceptibility against isolates not susceptible to meropenem and other antipseudomonal drugs currently used to treat bloodstream infections
- Cefepime-zidebactam demonstrated potent in vitro activity and complete activity against Enterobacterales, including MDR, ESBL producers, and CRE isolates
- Cefepime-zidebactam activity against *Enterobacterales* was comparable to that of ceftazidime-avibactam and superior to the activities of ceftolozane-tazobactam and meropenem
- Cefepime-zidebactam demonstrated good in vitro activity against S. maltophilia and Acinetobacter spp.
- The in vitro results of this investigation support the clinical development of cefepime-zidebactam as a therapeutic option for the treatment of serious infections caused by GNB, including MDR phenotypes

Acknowledgements

This study was supported by Wockhardt Bio AG.

References

Avery LM, Abdelraouf K, Nicolau DP (2018). Assessment of the *in vivo* efficacy of WCK 5222 (cefepime-zidebactam) against carbapenem-resistant *Acinetobacter baumannii* in the neutropenic murine lung infection model. *Antimicrob Agents Chemother* 62: e00948.

Burgess SV, Mabasa VH, Chow I, et al. (2015). Evaluating outcomes of alternative dosing strategies for cefepime: a qualitative systematic review. *Ann Pharmacother* 49: 311–322.

Clinical and Laboratory Standards Institute (2019). M100Ed29E. Performance standards for antimicrobial susceptibility testing: 29th informational supplement. Wayne, PA: CLSI.

Maxepime Package Insert (2012). Available at http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/050679s036lbl.pdf. Accessed February 18, 2016.

Sader HS, Rhomberg PR, Flamm RK, Jones RN, Castanheira M (2017). WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β -lactamases. *J Antimicrob Chemother* 72: 1696–1703.

Sader HS, Castanheira M, Huband M, Jones RN, Flamm RK (2017). WCK 5222 (cefepime-zidebactam) antimicrobial activity against clinical isolates of Gram-negative bacteria collected worldwide in 2015. *Antimicrob Agents Chemother* 24: e00072-17.

Contact

Helio S. Sader, MD, PhD
JMI Laboratories
345 Beaver Kreek Centre, Suite A
North Liberty, IA 52317
Phone: (319) 665-3370
Fax: (319) 665-3371
Email: helio-sader@jmilabs.com

To obtain a PDF of this poster:

Scan the QR code or visit https://www.jmi
labs.com/data/posters/IDWeek2019
-cefepime-zidebactam-bacteremia.pdf

Charges may apply. No personal information is stored.