Antimicrobial Activity of Ceftibuten-Avibactam against Clinical Isolates of Enterobacteriales Producing Clinically Relevant Beta-Lactamases

Hello S. Sader, Jill Lindley, Gauri M. Deshpande, Tim Doyle, Mariana Castanheira
JMI Laboratories, North Liberty, Iowa, USA

Introduction

• Ceftibuten is an oral cephalosporin active against Enterobacteriales, which was approved by the US Food and Drug Administration in 1995.
• Avibactam is a potent inhibitor of extended-spectrum β-lactamases (ESBLs), some carbapenemases, and AmpC that can be administered orally or as a prophylaxis.
• We evaluated in vitro activity of ceftibuten-avibactam against molecularly characterized Enterobacteriales that produced the most common β-lactamases and assessed the avibactam concentration to be combined with ceftibuten for susceptibility testing.

Methods

• The organism collection included 73 Enterobacteriales isolates producing ESBLs (28): CTX-M, SHV, and TEM, AmpC (9): MBC (7): NDM, VIM, and IMP, AmpC demethylase (3); plasmid AmpC (3); OXA-48-like (2); and SME (2) as well as isolates with porin alterations (5) and xanthine organisms (3).
• Ceftibuten was tested alone and with avibactam at fixed concentrations of 2 mg/L, 4 mg/L, and 8 mg/L, and a fixed ratio of 2:1 and 1:1.
• Resistance mechanisms were evaluated by whole genome sequencing, as previously described.
• Organisms were preclassified for the susceptibility to ceftibuten-avibactam category based on produced β-lactamases and the known spectrum of avibactam. Ceftibuten-avibactam MIC distributions for the various combinations were grouped as follows (Figures 1 to 5):
 - Organisms that expressed β-lactamases that were completely inhibited by avibactam labeled as “inhibited”.
 - Organisms that contained at least one β-lactamase that was not inhibited by avibactam and expressed other resistance mechanisms to ceftibuten that were not affected by avibactam labeled as “not inhibited”.
 - Wild type organisms.

Results

• The fixed avibactam (4 mg/L) level separated ceftibuten-avibactam-susceptible from ceftibuten-avibactam-resistant isolates (Figure 2).
• Ceftibuten-avibactam (fixed 4 mg/L) was very active against Enterobacteriales producing ESBLs (MIC50/90, 0.03/0.12 mg/L), including CTX-M-15 (MIC50/90, 0.03/0.12 mg/L) and plasmidic AmpC (MIC range, 0.12–0.5 mg/L), SME (MIC range, 0.06–0.12 mg/L), and OXA-48-like (MIC range, 0.06–0.12 mg/L; Table 1 and Figure 6).
• Ceftibuten-avibactam exhibited limited activity against MBL producers (MICav, >32 mg/L) against well-characterized organisms stratified by resistance mechanism.

Conclusions

• Ceftibuten-avibactam showed potent in vitro activity against Enterobacteriales producing most clinically relevant β-lactamases, including ESBLs, AmpC, OXA-48-like, and AmpC, for which limited oral treatment options are available.
• The results of this study demonstrated that the best method for determining ceftibuten MIC values was to use doubling dilutions of ceftibuten in the presence of a fixed concentration of 4 mg/L of avibactam.

Acknowledgements

This study at JMI Laboratories was supported by Pfizer Inc. (New York, NY). JMI Laboratories received compensation fees for services in relation to preparing the poster which was funded by Pfizer Inc.