Gepotidacin demonstrated potent activity against fluoroquinolone-susceptible and -not susceptible subsets of *E. coli* causing UTI in the US.

In general, gepotidacin inhibited between 90.2% and 100% of QRDR subsets at ≤4 mg/L and MIC values did not seem to be affected by any combinations of QRDR mutations observed in this study.

Higher MIC results were noted for gepotidacin when tested against the rare isolates carrying *qnrB/S* genes.

These data support the clinical development of gepotidacin as a potential treatment option for uUTI caused by fluoroquinolone-susceptible and -not susceptible subsets of *E. coli*.

Materials and Methods

Bacterial organisms

- A total of 1,035 *E. coli* collected from 38 US sites located in 9 Census regions were included as part of the Gepotidacin Global UTI Surveillance Program for 2019.
- Only isolates responsible for UTI were included; these isolates were cultured from urine samples (85.3%) or urine catheter (14.7%).
- Bacterial identification was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing

- Isolates were tested for susceptibility by broth microdilution and agar dilution following Clinical and Laboratory Standards Institute CLSI M07 (2018) guidelines.
- Frozen-fragment broth microdilution panels were manufactured by JMI Laboratories (North Liberty, Iowa) and contained cation-adjusted Mueller-Hinton broth. Agar dilution plates were used for testing mecillinam and fosfomycin and the latter included glucose-6-phosphate (25 μM).
- Quality assurance was performed by sterility checks, colony counts, and using CLSI-recommended quality control reference strains.
- *E. coli* with MIC results ≤0.5 μg/mL for ciprofloxacin and/or ≤1 μg/mL for levofloxacin (not susceptible to either one or both agents based on CLSI criteria) were selected for screening of fluoroquinolone resistance mechanisms. Isolates were subjected to genome sequencing, followed by screening of plasmid-mediated fluoroquinolone resistance genes and mutations in the quinolone resistance-determining regions (QRDRs) of *gyrA*, *gyrB*, *parC*, and *parE*.

Screening of resistance determinants

- Selected isolates had total genomic DNA extracted by the fully automated Thermofluidic® KingFisher™ Flex Magnetic Particle Processor (Cleveland, OH, USA), which was used to generate input material for library construction.
- DNA libraries were prepared using the Nextera® library construction protocol (Illumina, San Diego, CA, USA) following the manufacturer’s instructions and were sequenced on MiSeq Sequencer platforms at JMI Laboratories.
- FASTQ format sequencing files for each sample set were assembled independently using the de novo assembler SPAdes 3.11.0. An in-house software was applied to align the assembled sequences against a comprehensive in-house database containing known plasmid-encoded fluoroquinolone resistance genes and reference *gyrA*, *gyrB*, *parC*, and *parE* sequences from a susceptible control strain.

Introduction

- Gepotidacin ([GSK216944](https://www.gsk.com)) is a novel, trisaccharide/cyclic, bacterial type IA topoisomerase inhibitor in Phase 3 clinical trials for the treatment of genitourinary and uncomplicated uterine tract infection (UTI).
- This new agent inhibits DNA gyrase and type IV topoisomerase by a mechanism of action that is different from that of fluoroquinolones.
- This study characterized fluoroquinolone-not susceptible *Escherichia coli* coagulating UTI collected from patients with UTIs for a gepotidacin-UTI global surveillance study as part of the SENTRY Antimicrobial Surveillance Program and evaluated the in vivo activity of gepotidacin and comparators against various phenotypic and genotypic subsets.

Table 1. Distribution of *E. coli* MICs against phenotypic and genotypic subsets of *E. coli*

<table>
<thead>
<tr>
<th>Phenotypic susceptibility phenotype</th>
<th>Gepotidacin MIC (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gepotidacin susceptible</td>
<td>MIC ≤ 4</td>
</tr>
<tr>
<td>Gepotidacin intermediate susceptible</td>
<td>4 < MIC ≤ 8</td>
</tr>
<tr>
<td>Gepotidacin resistant</td>
<td>MIC > 8</td>
</tr>
</tbody>
</table>

Results

- A total of 28.6% (277/1,035) *E. coli* isolates were not susceptible to either ciprofloxacin or levofloxacin or both (Tables 1 and 2). In general, this phenotype was noted in 16.4% and 24.6% of *E. coli* from most US Census regions. However, the West South Central (34.4%) and Middle Atlantic (61.5%) regions had the highest rates of fluoroquinolone susceptible *E. coli*.
- In general, a total of eight QRDR genotype patterns were observed among isolates not susceptible to fluoroquinolones (Table 1).
- Among these, the most frequent was a GyrB-Leu595Val (16%; 146/277) that double mutations in GyrA and ParC, followed by isolates (20.6%; 57/277) with double mutations in GyrA and single mutations in ParC and ParE (Table 1).
- The third most common genotype was represented by isolates (14.0%; 41/277) with double mutations in GyrA and a single mutation in ParC (Table 1).
- Gepotidacin had MIC₅₀ and MIC₉₀ values of 2 μg/mL when tested against isolates susceptible to both ciprofloxacin and levofloxacin (Tables 1 and 2). Other agents (amoxicillin-clavulanate, nitrofurantoin, fosfomycin, and mecillinam) were active (between 92.7% and 99.5% susceptibility) against this fluoroquinolone-susceptible subset.
- Aminocillin-clavulanate (89.5% susceptible) and trimethoprim-sulfamethoxazole (78.5% susceptible) had more limited activity against fluoroquinolone-resistant isolates (Table 2).
- Overall, gepotidacin had MIC₅₀ values of 1 μg/mL or 2 μg/mL and MIC₉₀ values of 2 μg/mL or 4 μg/mL when tested against phenotypic or genotypic subsets of isolates not susceptible to fluoroquinolones and containing various combinations of QRDR mutations (with or without plasmid-encoded resistance genes).
- Among 277 *E. coli* isolates not susceptible to fluoroquinolones, four (1.4%) had wildtype sequences for QRDR and carried qnrB1 (1 isolate) or qnrB1 (3 isolates). These isolates showed a gepotidacin MIC of 8 μg/mL or 16 μg/mL, respectively (Table 1).
- A total of 12 (4.3%) isolates carried qnrB1 or qnrB2 or with no mutations in gyrA and gepotidacin (MIC₅₀/₉₀, 8/16 μg/mL) had MIC results of 0.5–32 μg/mL, against this subset (Table 1).
- Against the fluoroquinolone-not susceptible subset bolitin 31 (94.4% susceptible, nitrofurantoin 2%, susceptible, and mecillinam 92.8% susceptible) were active, whereas aminocillin-clavulanate (96.6% susceptible) and trimethoprim-sulfamethoxazole (73.7% susceptible) had limited activity (Table 2).

Acknowledgements

This study was supported by the following funding sources: GlaxoSmithKline, LLC (Schering-Plough Research Institute) and JMI Laboratories. The study was conducted as part of the AdaptivAIR Study, supported by GlaxoSmithKline, LLC (Schering-Plough Research Institute) and JMI Laboratories. The project has been funded in whole or in part with grant funds from the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under OTA Agreement No. HHSO100201700050C.

References

Contact

Rodrigo E. Mendes, Ph.D. JMI Laboratories 435 Beavercross Center, Suite A West Liberty, IA 52776 Phone: (515) 655-5370 Fax: (515) 655-1371 Email: rodrigo-mendes@jmilabs.com