IDWeek 2022 | Poster #P642

In Vitro Activity of Cefiderocol and Comparator Agents Against Molecularly Characterized Clinical Isolates of Enterobacterales Causing Infections in United States Hospitals (2020–2021)

RE Mendes, JH Kimbrough, V Kantro, D Shortridge, HS Sader, JM Streit, M Castanheira JMI Laboratories, North Liberty, Iowa, USA

Introduction

- Cefiderocol is approved by the US Food and Drug Administration (FDA) for the treatment of complicated urinary tract infections, including pyelonephritis, as well as hospital-acquired bacterial pneumonia, and ventilator-associated bacterial pneumonia.
- Cefiderocol is a siderophore cephalosporin with broad activity against Gram-negative bacteria, including multidrug-resistant (MDR) organisms like carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii.
- The activity of this molecule is due to its ability to achieve high periplasmic concentrations by hijacking the bacterial iron transport machinery, which in turn potentiates cell entry.
- In addition, cefiderocol remains stable to hydrolysis by serine β-lactamases (ESBLs, KPCs, and OXA-type carbapenemases) and metallo-β-lactamases.
- In this study, the activities of cefiderocol and comparator agents were analyzed against Enterobacterales, including molecularly characterized isolates, as part of the SENTRY Antimicrobial Surveillance Program for USA.

Materials and Methods

Bacterial organisms

- This study comprised a collection of 8,328 Enterobacterales collected from various clinical specimens from patients hospitalized in 32 medical centers in all 9 US Census Divisions during 2020–2021. Only consecutive isolates (1 per patient infection episode) responsible for documented infections according to local criteria were included.
- Bacterial identification was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing

- Isolates were tested for susceptibility by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) M07 (2018) guidelines.
- Frozen-form broth microdilution panels were manufactured by JMI Laboratories (North Liberty, IA, USA) and contained cation-adjusted Mueller-Hinton broth for comparator agents.
- Susceptibility testing for cefiderocol used broth microdilution panels containing iron-depleted media per CLSI guidelines.
- Quality assurance was performed by sterility checks, colony counts, and testing CLSI-recommended quality control reference strains.
- MIC interpretations were performed using CLSI breakpoints for comparators and FDA/CLSI breakpoints for cefiderocol (≤4/8/≥16 mg/L for susceptible, intermediate, and resistant).
- Imipenem-relebactam MIC interpretations used FDA breakpoints.
- Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis with ceftriaxone, ceftazidime, or aztreonam MIC values of ≥2 mg/L and any Enterobacterales displaying MIC values ≥2 mg/L for imipenem (excluded for P. mirabilis, P. penneri, and indole-positive Proteeae) or meropenem were subjected to genome sequencing and screening of β -lactamase genes.

Screening of β-lactamase genes

- Selected isolates had total genomic DNA extracted by the fully automated Thermo Scientific™ KingFisher™ Flex Magnetic Particle Processor (Cleveland, OH, USA), which was used as input material for library construction.
- DNA libraries were prepared using the NexteraTM library construction protocol (Illumina, San Diego, CA, USA) following the manufacturer's instructions and were sequenced on MiSeq Sequencer platforms at JMI Laboratories.
- FASTQ format sequencing files for each sample set were assembled independently using de novo assembler SPAdes 3.15.3. An in-house software was applied to align the assembled sequences against a comprehensive in-house database containing known β-lactamase genes.

Results

- A total of 14.5% (793/5,451) of the carbapenem-susceptible E. coli, K. pneumoniae, and P. mirabilis isolates met the criteria for β-lactamase screening and carried ESBL and/or plasmid AmpC genes (Table 1).
- The majority (87.0%; 690/793) of these isolates carried blacted alone, followed by a smaller proportion of isolates carrying plasmid AmpC (6.4%;
- Cefiderocol had MIC_{50} and MIC_{90} values of 0.5 mg/L and 2 mg/L, respectively, against the carbapenem-susceptible ESBL/AmpC and CTX-M groups of Enterobacterales, as well as against the group of isolates carrying multiple β -lactamase genes (Table 1 and Figure 1).
- The cefiderocol MIC₅₀ value of 0.06 mg/L and MIC₉₀ value of 0.5 mg/L, noted against carbapenem-susceptible AmpC producers, were 4- to 8-fold lower than those values obtained against the CTX-M group (MIC_{50/90}, 0.5/2 mg/L) (Table 1 and Figure 1).
- All antimicrobial agents tested against non-ESBL, carbapenem-susceptible E. coli, K. pneumoniae, and P. mirabilis isolates showed activity (≥93.5% susceptible), except for the fluoroquinolones (Table 2).
- In contrast, cefiderocol, ceftazidime-avibactam, the carbapenems, and the carbapenem combinations were active (≥99.4% susceptible) against carbapenem-susceptible, ESBL-AmpC E. coli, K. pneumoniae, and P. mirabilis producers.
- A total of 1.5% (125/8,328) of all Enterobacterales isolates were not susceptible to imipenem and/or meropenem (Table 1).
- Most isolates not susceptible to the carbapenems carried KPC (52.0%), followed by MBL (7.2%) and OXA-48-like (4.8%).
- Cefiderocol inhibited at ≤ 4 mg/L (98.4% susceptible) all but 2 of the Enterobacterales isolates not susceptible to carbapenems (Table 1).
- Cefiderocol (MIC_{50/90}, 0.5/4 mg/L; 98.4% susceptible) and ceftazidimeavibactam (MIC_{50/90}, 1/8 mg/L; 91.2% susceptible) were the most active agents against Enterobacterales not susceptible to carbapenems.
- Imipenem-relebactam (MIC_{50/90}, 0.25/4 mg/L; 81.6% susceptible) and meropenem-vaborbactam (MIC_{50/90}, 0.12/8 mg/L; 86.4% susceptible) had suboptimal activity (Table 2).
- Cefiderocol (MIC_{50/90}, 0.5/2 mg/L), imipenem-relebactam (MIC_{50/90}, 0.12/0.5 mg/L), meropenem-vaborbactam (MIC_{50/90}, 0.03/0.5 mg/L), and ceftazidime-avibactam (MIC_{50/90}, 1/2 mg/L) were active (100% susceptible) against the KPC subset (Table 2).
- Cefiderocol (MIC, 0.06–4 mg/L; 100% susceptible) was also active against Enterobacterales carrying MBL genes (Table 1), whereas cefiderocol (MIC, 0.5–2 mg/L; 100% susceptible; Table 1) and ceftazidime-avibactam (1–4 mg/L; 100% susceptible) were active against isolates carrying bla_{0x4-48}-like (data not shown).

Figure 1. Cumulative MIC distribution of cefiderocol against various subsets of **Enterobacterales** from the USA

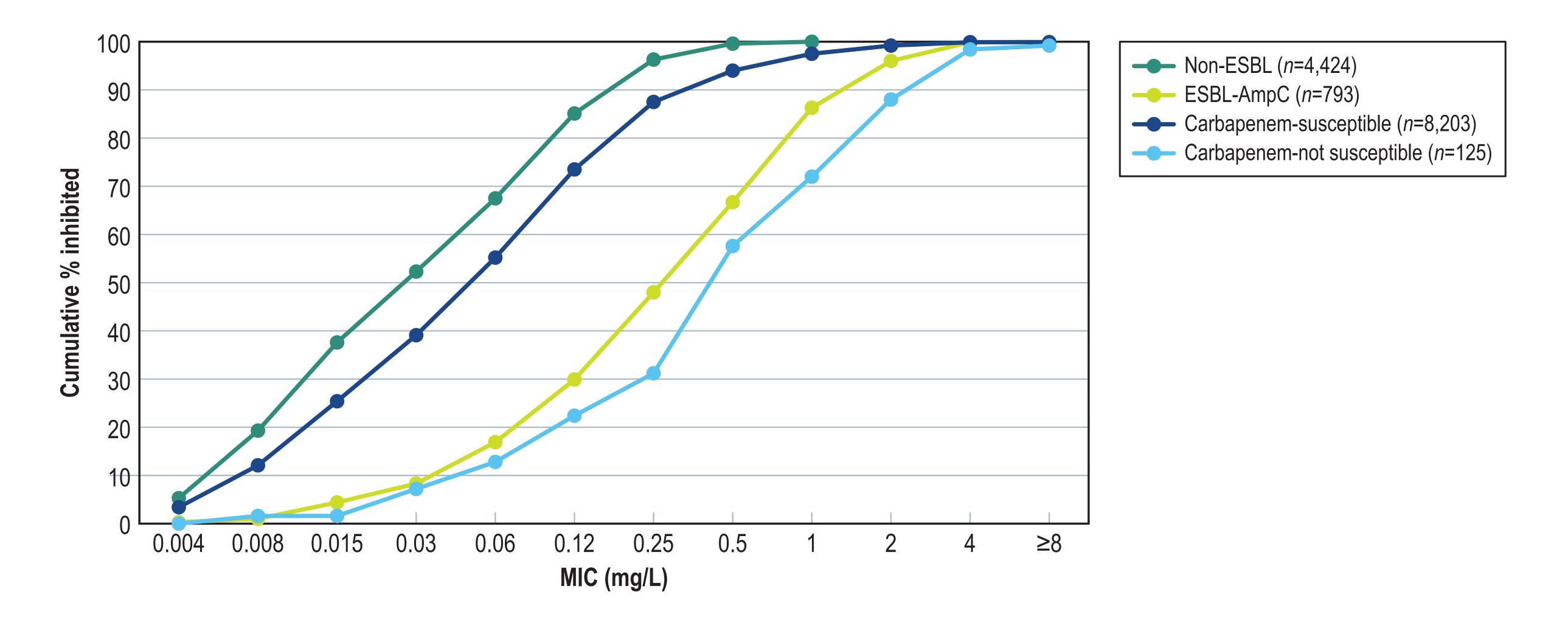


Table 1. MIC distribution of cefiderocol obtained against *Enterobacterales* and resistant subsets from the USA

Organism/					No. an	a cumulativ	e % or isol	ates innibit	ed at iviic ((mg/L) or:					NAIC	МІС	0/ C h
Group (no. of isolates)	≤0.004	0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	>16	MIC ₅₀	MIC ₉₀	%S ^h
E. coli, K. pneumoniae, and P. mi	rabilis																
Non-ESBL (4,424) ^a	235	618	810	652	670	780	495	146	18						0.03	0.25	100.0
NOII-LODE (4,424)	(5.3)	(19.3)	(37.6)	(52.3)	(67.5)	(85.1)	(96.3)	(99.6)	(100.0)						0.03	0.25	100.0
ESBL/AmpC (793)b	2	6	27	31	68	103	144	148	155	77	31	1			0.5	2	99.9
LODE/ Ampo (199)	(0.3)	(1.0)	(4.4)	(8.3)	(16.9)	(29.9)	(48.0)	(66.7)	(86.3)	(96.0)	(99.9)	(100.0)			0. 5	2	
CTX-M (690)°		5	21	21	53	86	127	132	144	72	28	1			0.5	2	99.9
01/(W1 (000)		(0.7)	(3.8)	(6.8)	(14.5)	(27.0)	(45.4)	(64.5)	(85.4)	(95.8)	(99.9)	(100.0)					
AmpC (51) ^d	2	0	4	9	12	10	7	4	1	1	1				0.06	0.5	100.0
7 (TIPO (OI)	(3.9)	(3.9)	(11.8)	(29.4)	(52.9)	(72.5)	(86.3)	(94.1)	(96.1)	(98.0)	(100.0)					010	
Multiple (26) ^e		1	1	0	2	2	5	6	5	2	2				0.5	2	100.0
		(3.8)	(7.7)	(7.7)	(15.4)	(23.1)	(42.3)	(65.4)	(84.6)	(92.3)	(100.0)						
All Enterobacterales																	
Carbapenem-S (8,203) ^f	278	714	1,094	1,121	1,319	1,502	1,146	538	289	139	52	9	1	1 (100 0)	0.06	0.5	99.9
	(3.4)	(12.1)	(25.4)	(39.1)	(55.2)	(73.5)	(87.5)	(94.0)	(97.5)	(99.2)	(99.9)	(>99.9)	(>99.9)	(100.0)			
Carbapenem-NS (125) ^f		2	(4.0)	(7.0)	(40.0)	12	11	33	18	20	13	1	0	1 (4.00, 0)	0.5	4	98.4
		(1.6)	(1.6)	(7.2)	(12.8)	(22.4)	(31.2)	(57.6)	(72.0)	(88.0)	(98.4)	(99.2)	(99.2)	(100.0)			
KPC (65)		(2.1)	(2.1)	(10.0)	(12.0)	(24.6)	(22.0)	15	(72.0)	11	(100.0)				0.5	2	100.0
		(3.1)	(3.1)	(10.8)	(13.8)	(24.6)	(33.8)	(56.9)	(73.8)	(90.8)	(100.0)						
MBL (9) ^g					<u> </u>	(11 1)	(11 1)	(33.3) T	(33.3) T	(66.7)	(100.0)				2		100.0
					(11.1)	(11.1)	(11.1)	(22.2)	(33.3)	(66.7)	(100.0)						
OXA-48-like (5)								(40.0)	(80.0)	(100.0)					1	_	100.0
				2	1	5	5	(40.0)	(80.0)	(100.0)	1	1		1			
Carbapenemase-negative (45)				(4.4)	(13.3)	(24.4)	(35.6)	(66.7)	(75.6)	(86.7)	(95.6)	(97.8)	0 (97.8)	(100.0)	0.5	4	95.6
				(4.4)	(13.3)	(24.4)	(33.0)	(00.7)	(15.0)	(80.7)	(95.0)	(31.0)	(31.0)	(100.0)			

^a Includes 2,736 E. coli, 1,233 K. pneumoniae, and 455 P. mirabilis isolates that did not meet the MIC criteria for β-lactamase screening (i.e., ceftriaxone, ceftazidime, or aztreonam MICs ≤1 mg/L). b Includes 575 E. coli, 209 K. pneumoniae, and 9 P. mirabilis (carbapenem-susceptible) isolates that met the MIC criteria for β-lactamase screening and carried ESBL and/or AmpC genes (i.e., ceftriaxone, ceftazidime, or aztreonam MICs ≥2 mg/L). c Includes 512 E. coli, 173 K. pneumoniae, and 5 P. mirabilis (carbapenem-susceptible) isolates that met the MIC criteria for β-lactamase screening and carried bla_{CTX-M} as the sole ESBL gene.

oli, 6 K. pneumoniae, and 2 P. mirabilis (carbapenem-susceptible) isolates that met the MIC criteria for β-lactamase screening and carried bla_{cmy}, bla_{ded}, or bla_{fox} genes without other extended-spectrum β-lactamases e Includes 17 E. coli and 9 K. pneumoniae (carbapenem-susceptible) isolates that met the MIC criteria for β-lactamase screening and carried multiple combinations of ESBL or ESBL and AmpC genes.

Enterobacterales susceptible to carbapenems were defined as isolates with imipenem and/or meropenem MICs ≤ 1 mg/L while those Enterobacterales classified as not susceptible were those with imipenem (excluding *P. mirabilis*, *P. penneri*, and indole-positive Proteeae) and/or meropenem MICs ≥ 2 mg/L. g Includes the following genes: bla_{NDM-1} (7), bla_{NDM-5} (1), and bla_{IMP-4} (1). h % of isolates inhibited at the FDA/CLSI breakpoint of ≤4 mg/L

Table 2. Antimicrobial activity of cefiderocol tested against Enterobacterales and resistant subsets from the USA

Notice over biologoupt			5/ - /		OLOI	
Antimicrobial agent	50%	90%	Range	%S	%	%R
Non-ESBL ^b (4,424)						
Cefiderocol ^c	0.03	0.25	≤0.004 to 1	100.0	0.0	0.0
Imipenem-relebactam ^c	0.12	0.5	≤0.03 to 8	93.5 b	5.4	1.1
Meropenem-vaborbactam	0.03	0.06	≤0.015 to 1	100.0	0.0	0.0
Ceftazidime-avibactam	0.12	0.25	≤0.015 to 0.5	100.0		0.0
Piperacillin-tazobactam	2	4	≤0.06 to >128	96.8	1.8	1.4
Aztreonam	0.06	0.12	≤0.03 to 1	100.0	0.0	0.0
Ceftriaxone	≤0.06	0.12	≤0.06 to 1	100.0	0.0	0.0
Ceftazidime	0.12	0.5	≤0.015 to 1	100.0	0.0	0.0
Cefepime	0.06	0.12	≤0.03 to 32	99.8 g	0.1	<0.1
Meropenem	≤0.015	0.06	≤0.015 to 1	100.0	0.0	0.0
Imipenem	≤0.12	0.5	≤0.12 to 4	93.6	5.7	0.8
Ciprofloxacin	0.03	>4	≤0.008 to >4	84.0	2.9	13.0
Levofloxacin	0.06	8	≤0.015 to >32	86.0	2.1	11.9
Amikacin	2	4	≤0.25 to >32	99.9	0.1	<0.1
Gentamicin	0.5	1	≤0.12 to >16	94.9	0.3	4.8
ESBL-AmpC b (793)						
Cefiderocol ^c	0.5	2	≤0.004 to 8	99.9	0.1	0.0
Imipenem-relebactam ^c	0.12	0.12	≤0.03 to 8	99.4 b	0.3	0.4
Meropenem-vaborbactam	0.03	0.03	≤0.015 to 0.5	100.0	0.0	0.0
Ceftazidime-avibactam	0.12	0.5	≤0.015 to 4	100.0		0.0
Piperacillin-tazobactam	4	32	0.12 to >128	71.4	12.9	15.7
Aztreonam	>16	>16	0.12 to >16	9.5	11.3	79.2
Ceftriaxone	>8	>8	0.12 to >8	1.4	0.6	98.0
Ceftazidime	16	>32	0.25 to >32	16.3	12.9	70.9
Cefepime	>32	>32	≤0.03 to >32	12.0 g	9.1	78.9
Meropenem	0.03	0.06	≤0.015 to 1	100.0	0.0	0.0
Imipenem	≤0.12	0.25	≤0.12 to 8	99.4	0.3	0.4
Ciprofloxacin	>4	>4	≤0.008 to >4	15.4	6.3	78.3
Levofloxacin	8	32	≤0.015 to >32	23.9	7.5	68.6
Amikacin	4	8	≤0.25 to >32	97.5	1.4	1.1
Contonaioin	1	- 16	20 10 to > 10	64.7	1 0	26 E

MIC (mg/L)

etimiorohial agant		MIC (m	g/L)	CLSIa					
ntimicrobial agent	50 %	90%	Range	%S	%	%R			
arbapenem-susceptible ^b (8,203)									
Cefiderocol ^c	0.06	0.5	≤0.004 to 32	99.9	0.1	<0.1			
mipenem-relebactam ^c	0.12	0.5	≤0.03 to 8	94.9 b	4.2	0.8			
/leropenem-vaborbactam	0.03	0.06	≤0.015 to 1	100.0	0.0	0.0			
Ceftazidime-avibactam	0.12	0.25	≤0.015 to >32	>99.9		<0.1			
iperacillin-tazobactam	2	16	≤0.06 to >128	88.4	3.8	7.8			
ztreonam	0.12	>16	≤0.03 to >16	84.9	1.8	13.3			
Ceftriaxone	≤0.06	>8	≤0.06 to >8	81.6	0.9	17.5			
eftazidime	0.25	16	≤0.015 to >32	85.6	1.9	12.5			
Cefepime	0.06	8	≤0.03 to >32	88.7 g	2.2	9.1			
/leropenem	0.03	0.06	≤0.015 to 1	100.0	0.0	0.0			
mipenem	≤0.12	1	≤0.12 to 8	93.9	5.2	0.9			
Ciprofloxacin	0.03	>4	≤0.008 to >4	78.9	3.1	18.0			
evofloxacin	0.06	8	≤0.015 to >32	81.2	3.0	15.8			
mikacin	2	4	≤0.25 to >32	99.6	0.3	0.1			
Gentamicin	0.5	2	≤0.12 to >16	91.9	0.6	7.5			
arbapenem-nonsusceptible b (125)									
Cefiderocol ^c	0.5	4	0.008 to >64	98.4	0.8	0.8			
mipenem-relebactam ^c	0.25	4	0.06 to >8	81.6 b	4.8	13.6			
/leropenem-vaborbactam	0.12	8	≤0.015 to >8	86.4	4.0	9.6			
Ceftazidime-avibactam	1	8	≤0.015 to >32	91.2		8.8			
Piperacillin-tazobactam	>128	>128	1 to >128	8.0	1.6	90.4			
ztreonam	>16	>16	≤0.03 to >16	13.6	0.8	85.6			
Ceftriaxone	>8	>8	0.12 to >8	8.0	0.8	91.2			
Ceftazidime	>32	>32	0.12 to >32	14.4	2.4	83.2			
Cefepime	32	>32	≤0.03 to >32	16.8 g	23.2	60.0			
/leropenem	8	>32	0.03 to >32	19.2	16.0	64.8			
mipenem	8	>8	0.5 to >8	4.0	21.6	74.4			
iprofloxacin	2	>4	≤0.008 to >4	32.0	4.8	63.2			
evofloxacin	2	>32	≤0.015 to >32	35.2	8.8	56.0			
mikacin	4	32	≤0.25 to >32	82.4	10.4	7.2			
Gentamicin	1	>16	≤0.12 to >16	63.2	12.8	24.0			

Criteria as published by CLSI (2021) unless otherwise indicated; "—", breakpoint not available.

Using CLSI/FDA breakpoints for cefiderocol. Imipenem-relebactam breakpoints were applied to all organisms, including Morganella spp., Proteus spp., and

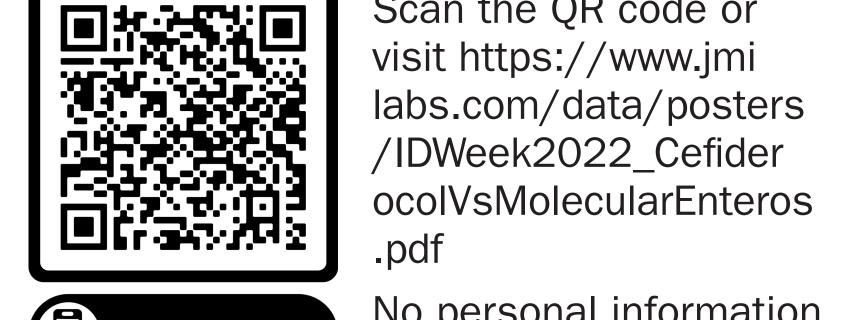
rovidencia spp., where breakpoints are not available.

Conclusions

- · Cefiderocol in vitro activity (98.4% susceptible) was consistent against various subsets, including against Enterobacterales carrying carbapenemase genes other than bla_{KPC} , against which approved β -lactam/ β -lactamase inhibitor combinations showed limited activity.
- These data reinforce cefiderocol as an important option for the treatment of serious infections caused by Enterobacterales and resistant subsets in patients hospitalized in US medical centers.

Acknowledgments

This research and poster presentation were sponsored by Shionogi & Co., LTD.


References

- 1. Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. MO7 11th Edition. Wayne, PA, USA.
- 2. Clinical and Laboratory Standards Institute. 2022. Performance standards for antimicrobial susceptibility testing. M100 32nd Edition. Wayne, PA, USA.
- 3. FDA Susceptibility Test Interpretive Criteria: https://www.fda.gov/drugs /development-resources/antibacterial-susceptibility-test-interpretive-criteria. Accessed April 2022.
- 4. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: Analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6: S69-S78.
- 5. Ong'uti S, Czech M, Robilotti E, Holubar M. 2021. Cefiderocol: A new cephalosporin stratagem against multidrug resistant Gram-negative bacteria. Clin Infect Dis. In press.
- 6. Syed YY. 2021. Cefiderocol: A review in serious Gram-negative bacterial infections. Drugs. 24: 1–13.

Contact

Rodrigo E. Mendes, Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371

Email: rodrigo-mendes@jmilabs.c

No personal information

To obtain a PDF of this

IDWeek 2022, October 19–23, 2022, Washington, D.C.