Dual VIM-Producing Proteus mirabilis, Including a Novel VIM-75, **Among Elderly Patients in a Medical Center from Hungary: Report** from the 2020 SENTRY Antimicrobial Surveillance Program

Lalitagauri M. Deshpande¹, Katalin Burián², Ilona Dóczi Csányi², Mariana Castanheira¹ ¹ JMI Laboratories, North Liberty, IA, USA; ² Albert Szent-Györgyi Medical Centre, Szeged, Hungary

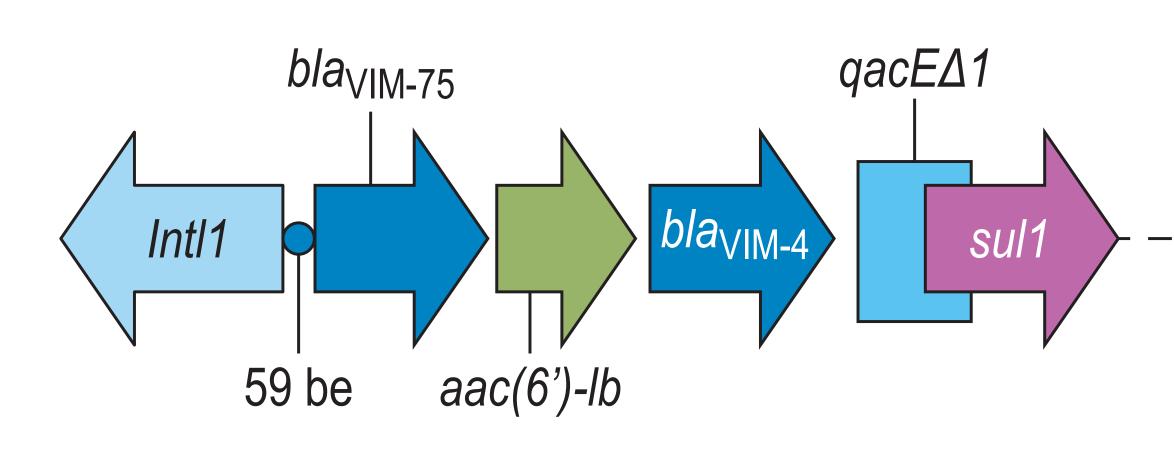
Introduction

- Proteus mirabilis is often involved in urinary tract infections and is naturally resistant to several antimicrobial agents, including colistin.
- Decreased susceptibility to imipenem commonly occurs in *P. mirabilis* isolates due to the acquisition of carbapenemase genes as well as the loss of porins and the reduced expression of penicillinbinding proteins (PBPs) PBP1a and PBP2; however, resistance to other carbapenems can occur due to acquisition of carbapenemases.
- Carbapenemases of the Verona integron-borne metallo-β-lactamase (VIM) family are among the most widespread globally, with >75 VIM variants reported so far.
- We identified an outbreak of P. mirabilis isolates carrying 2 distinct blaying genes each, among elderly patients from a medical center in Hungary.

Materials and Methods

- A total of 16 P. mirabilis isolates were received from Hungary during 2020 as part of the SENTRY Antimicrobial Surveillance Program.
- Isolates were susceptibility tested by reference broth microdilution as described by the Clinical and Laboratory Standards Institute (CLSI) M07 (2018) and M100 (2022) documents.
- Quality control (QC) was performed according to the CLSI M100 (2022) criteria.
- Carbapenem-nonsusceptible isolates were submitted to whole genome sequencing and analysis.
- Total genomic DNA was used as input material for library construction.
- DNA libraries were prepared using the Nextera XT[™] library construction protocol and index kit (Illumina, San Diego, CA, USA).
- DNA libraries were sequenced on a MiSeq Sequencer using MiSeq Reagent Kit v3 (600 cycle; Illumina).
- FASTQ format sequencing files for each sample were assembled independently using *de novo* assembler SPAdes 3.13.0.
- An in-house designed software was used for in silico screening of resistance genes from the assembled contigs.
- Isolates were evaluated for core genome multi-locus sequence typing (cgMLST) on the 1928 Diagnostics (https://www.1928diagnostics.com/) platform to decipher epidemiologic relationships.
- cgMLST phylogenetic tree was generated using the UPGMA method that uses a reference genome and genes that are found in at least 95% of the sample genomes. The analysis considered how many of the core genes differ between samples.

Results


- Among the 16 P. mirabilis isolates from Hungary, 5 carbapenemnonsusceptible, multidrug-resistant isolates were identified.
- 3 isolates were isolated from urinary tract infections and 1 each from bloodstream infection and pneumonia.
- Carbapenem-nonsusceptible P. mirabilis isolates were recovered from elderly patients (range 66–92 years old, median 85 years old) between February and March 2020.
- All isolates were resistant to ceftriaxone, cefepime, imipenem, gentamicin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, and plazomicin (Table 1).
- These isolates were susceptible to meropenem (0.25–0.5 mg/L) and ertapenem (0.03–0.25 mg/L).
- Sequencing analysis revealed that these isolates carried blavima and bla_{VIM-75} on a class 1 integron within IS26 and were separated by aac(6')-IIc (Figure 1).
- IS26 was located on a compound plasmid carrying other resistanceencoding genes, including armA.
- The integron structure showed 99% identity to the bla_{VIM-1} and bla_{VIM-4}—carrying integron located on an IncA/C plasmid described from a Vibrio cholerae isolated from a seagull in France in 2015 (GenBank accession number KR262557).
- These isolates also carried *bla*_{CTX-M-15} and many other resistanceencoding genes, including aac(3)-IId, aac(6`)-Iic, ant(3``)-Ia, aph(3`)-Ia, aph(6)-la, aph(6)-ld, catA1, dfrA1, mph(E), msr(E), sul1, sul2, and bla_{TEM-1} .
- Mutations in the quinolone resistance-determining regions of the DNA gyrase (GyrA S83I) and Topoisomerase IV (ParC S84I) genes were present in all isolates.
- Additionally, alterations in GyrB (E466D) and ParE (K84E, S459A) were identified.
- Based on cgMLST analysis, these 5 P. mirabilis isolates were considered highly similar genetically.
- Only 7–19 SNPs were detected among the core genome sequences evaluated (Figure 2).

• bla_{VIM-75} is a single amino acid variant (Q60R) of bla_{VIM-1} .

Table 1. Antimicrobial susceptibility of Proteus mirabilis isolates

looloto #		MIC (mg/L)														
Isolate #	CAZ	CRO	СРМ	AZT	CAZ-AVI	IPM	ERT	MEM	MEM-VAB	LEV	NIT	PIP-TAZ	AMK	ТОВ	TIG	
1	>32	>8	16	2	>32	>8	0.12	0.25	0.25	16	>64	64	>32	>16	2	
2	>32	>8	>32	8	>32	>8	0.06	0.5	0.5	>32	>64	>128	>32	>16	4	
3	>32	>8	32	8	32	>8	0.25	0.25	0.25	>32	>64	64	>32	>16	2	
4	32	>8	32	4	16	>8	0.03	0.5	0.5	>32	>64	32	>32	>16	4	
5	>32	>8	32	4	>32	>8	0.03	0.5	0.5	32	>64	>128	>32	>16	1	
CAZ, ceftazidime;	CRO, ceftriaxone; CPN	I, cefepime; AZT, az	treonam; CAZ-AVI, ce	eftazidime-avibacta	m; IPM, imipenem; ER	T, ertapenem; MEN	1, meropenem; MEM-	VAB, meropenem-v	aborbactam; LEV, levofle	oxacin; NIT, nitrof	urantoin; PIP-TAZ, p	iperacillin-tazobactam	; AMK, amikacin; T()B, tobramycin; TIG,	tigecycline; SXT,	

trimethoprim-sulfamethoxazole

Figure 2. cgMLST analysis of VIM-4 and VIM-75–producing P. mirabilis isolates

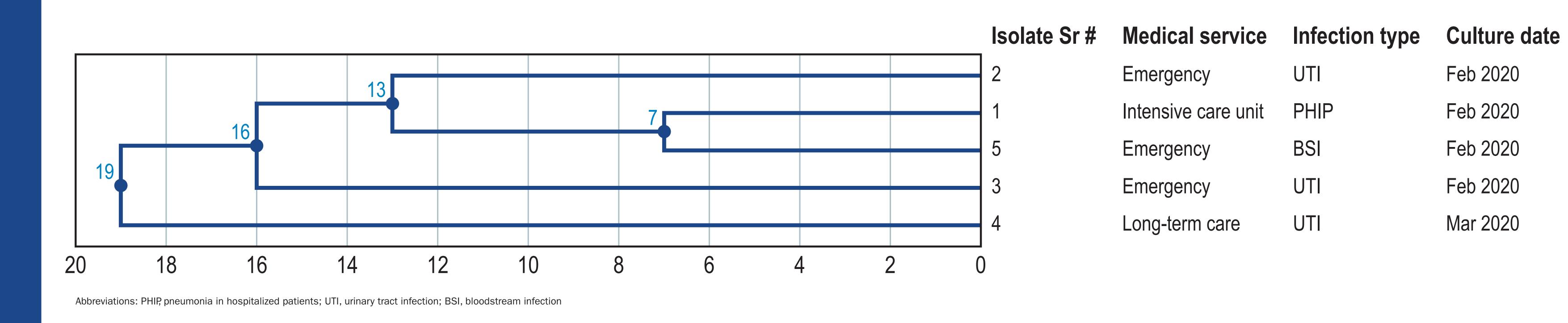
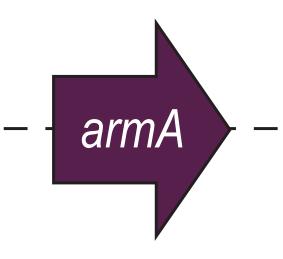
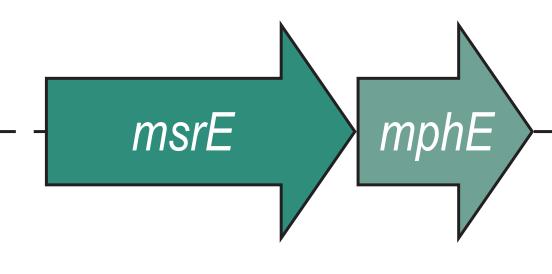




Figure 1. Genetic context of bla_{VIM-4} and bla_{VIM-75}-carrying integron in P. mirabilis isolates

SXT
>4
>4
>4
>4
>4

Conclusions

- The outbreak of multidrug-resistant *P. mirabilis* isolates carrying blaves and *bla*_{VIM-75} in a Hungarian medical center is concerning.
- Four out of 5 isolates were listed as non-nosocomial, indicating presence of a community reservoir.
- Despite carrying two VIM carbapenemases the *P. mirabilis* isolates remained susceptible to meropenem and ertapenem.
- Surveillance should continue for imipenem-resistant *P. mirabilis* to understand the spread of and treatment options for infections caused by these pathogens.

Funding

assistance.

This study and poster presentation were funded by JMI Laboratories.

Acknowledgments The authors wish to thank John H. Kimbrough and Amy Chen for

References

- . Aberkane S, Compain F, Barraud O, Ouédraogo A, Bouzinbi N, Vittecoq M, Jean-Pierre H, Decré D and Godreuil S. (2015) Non-01/Non-0139 Vibrio cholerae Avian Isolate from France Cocarrying the blaving and bla_{VIM-4} Genes. Antimicrob. Agents Chemother. 59: 6594-6596.
- 2. Bontron S, Poirel L, Kieffer N, Savov E, Trifonova A, Todorova I, Kueffer G and Nordmann P. (2020) Increased Resistance to Carbapenems in Proteus mirabilis Mediated by Amplification of the blavin-1-Carrying and IS26-Associated Class 1. Microb. Drug Res. 25: 663-667.
- 3. CLSI. M100Ed32. Performance standards for antimicrobial susceptibility testing: 32nd informational supplement. Wayne, PA, Clinical and Laboratory Standards Institute, 2022.
- . Weigel L, Anderson G and Tenover F. (2002) DNA Gyrase and Topoisomerase IV Mutations Associated with Fluoroquinolone Resistance in *Proteus mirabilis*. Antimicro. Agents Chemother. 46: 2582-2587.

Contact

Mariana Castanheira Chief Scientific Officer, JMI Laboratories 345 Beaver Kreek Center, Suite A North Liberty, Iowa 52317 USA mariana-castanheira@jmilabs.com

SCAN ME

poster

visit https://www.jmi labs.com/data/posters /IDWeek2022_DualVIM .pdf

To obtain a PDF of this

No personal information is stored.