Analysis of Resistance to Oral Standard-of-Care **Antibiotics for Urinary Tract Infections Caused By Escherichia coli and Staphylococcus saprophyticus Collected in the United States in 2022**

¹ S.J. Ryan Arends, ² R. Kapoor, ³ D. Torumkuney, ² N. Scangarella-Oman, ¹ R.E. Mendes

¹ JMI Laboratories, North Liberty, Iowa, USA

² GlaxoSmithKline, Collegeville, Pennsylvania, USA

³ GlaxoSmithKline, Brentford, Middlesex, UK

Introduction

Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action ^{1,2} which confers activity against most strains of target pathogens, such as Escherichia coli, Staphylococcus saprophyticus, and Neisseria gonorrhoeae, including those resistant to current antibiotics ³

Gepotidacin demonstrated efficacy for treatment of uncomplicated urinary tract infections (uUTIs) in two recently concluded phase 3 clinical trials ⁴ and is currently in phase 3 clinical development for the treatment of urogenital gonorrhea ⁵.

This study reports on the in vitro activity of gepotidacin and other oral antibiotics when tested against recent contemporary E. coli and S. saprophyticus clinical isolates collected from patients with UTIs for a gepotidacin uropathogen global surveillance study.

Materials and Methods

A total of 1,001 *E. coli* and 92 *S. saprophyticus* isolates were collected during 2022.

- These isolates came from 45 medical centers in the United States.
- Most isolates (77%) were cultured from urine specimens collected from patients seen in ambulatory, emergency, family practice, and outpatient medical services.
- Bacterial identifications were confirmed by MALDI-TOF MS.

Isolates were tested for susceptibility by CLSI methods ⁶ at a central laboratory (JMI Laboratories).

- Susceptibility to fosfomycin and mecillinam was determined by agar dilution.
- Fosfomycin testing was supplemented with glucose-6-phosphate (25 mg/L).

MIC results for oral antibiotics licensed for the treatment of uUTI, multidrug-resistant (MDR), and extended-spectrum β -lactamase (ESBL) subsets were interpreted per CLSI criteria 7

- The ESBL phenotype was classified for *E. coli* when isolates displayed aztreonam, ceftazidime, or ceftriaxone MIC values $\geq 2 \text{ mg/L}$.
- The MDR phenotype was defined for *E. coli* as described by Magiorakos et al. ⁸ as having a CLSI-not susceptible phenotype to 3 or more drug classes from the following: extended-spectrum cephalosporins (ceftriaxone or ceftazidime); carbapenems (meropenem); antipseudomonal penicillins + β -lactamase inhibitors (piperacillin-tazobactam); fluoroquinolones (ciprofloxacin or levofloxacin); and aminoglycosides (gentamicin or amikacin).
- Data was not reported for all drugs utilized in the SENTRY program MDR classification.

Disclosures

This study at JMI Laboratories was supported by GSK. JMI Laboratories received compensation fees for services in relation to preparing the poster.

This project has been funded in whole or in part with Federal funds from the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under Contract No. HHSO100201300011C.

Contact

S. J. Ryan Arends, Ph,D, **JMI** Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Email: Ryan.Arends@element.com

Gepotidacin demonstrated in vitro activity against contemporary E. coli and S. saprophyticus urine isolates from the US.

Gepotidacin activity was maintained among isolates demonstrating resistance to other oral standard-of-care antibiotics including amoxicillin-clavulanate, fluoroquinolones, fosfomycin, mecillinam, nitrofurantoin, and trimethoprimsulfamethoxazole.

Gepotidacin inhibited 91.5% of ESBL positive and 97.2% of MDR isolates at concentrations $\leq 4 \text{ mg/L}$.

Table 1 Activity of gepotidacin and comparator antimicrobials against UTI isolate subsets with resistance to oral agents

	MIC ₅₀ /MIC ₉₀ in mg/L (% susceptible; CLSI)									
Organism (No. of isolates)	Amoxicillin- Trimethoprim-									
Drug-resistant subset	Gepotidacin	Ciprofloxacin	clavulanate	Ampicillin	sulfamethoxazole ^a	Nitrofurantoin ^a	Fosfomycin ^b	Mecillinam ^b		
<i>E. coli</i> (1,001)	2/4	0.015/>4	4/16	4/>64	≤0.12/>4	16/16	0.5/1	0.25/4		
	_ ^c	(78.8%)	(85.2%)	(55.6%)	(73.3%)	(97.5%)	(99.3%)	(93.5%)		
Fluoroquinolone - NS (213)	1/4	>4/>4	8/16	>64/>64	4/>4	16/32	0.5/2	0.5/4		
	-	(0.5%)	(74.2%)	(25.9%)	(49.3%)	(91.1%)	(98.6%)	(93.4%)		
Amoxicillin-clavulanate - NS (148)	2/4	0.12/>4	16/32	>64/>64	0.5/>4	16/32	0.5/1	4/>32		
	-	(62.8%)	(0.0%)	(0.0%)	(52.0%)	(93.9%)	(98.6%)	(66.9%)		
Ampicillin - NS (444)	2/4	0.12/>4	8/16	>64/>64	>4/>4	16/32	0.5/1	1/16		
	-	(64.9%)	(66.7%)	(0.0%)	(48.9%)	(96.4%)	(98.6%)	(87.2%)		
Trimethoprim-sulfamethoxazole - NS (267)	2/4	0.12/>4	8/16	>64/>64	>4/>4	16/32	0.5/1	1/16		
	-	(59.6%)	(73.4%)	(14.7%)	(0.0%)	(94.8%)	(98.9%)	(88.8%)		
Nitrofurantoin - NS (25)	1/2	>4/>4	4/16	>64/>64	>4/>4	128/>128	0.5/2	0.5/>32		
	-	(24.0%)	(64.0%)	(36.0%)	(44.0%)	(0.0%)	(100.0%)	(88.0%)		
Fosfomycin - NS (7)	ND ^d	ND (57.1%)	ND (71.4%)	ND (14.3%)	ND (57.1%)	ND (100.0%)	ND (0.0%)	ND (71.4%)		
Mecillinam - NS (65)	2/4	0.015/>4	16/16	>64/>64	0.25/>4	16/32	0.5/4	32/>32		
	-	(78.5%)	(24.6%)	(12.3%)	(53.8%)	(95.4%)	(96.9%)	(0.0%)		
ESBL phenotype (106)	2/4	>4/>4	8/32	>64/>64	>4/>4	16/64	0.5/2	0.5/4		
	-	(25.5%)	(52.8%)	(0.9%)	(39.6%)	(89.6%)	(97.2%)	(93.4%)		
MDR phenotype (36)	2/2	>4/>4	16/32	>64/>64	>4/>4	16/64	1/2	1/4		
	-	(0.0%)	(22.2%)	(0.0%)	(38.9%)	(83.3%)	(94.4%)	(94.4%)		
S. saprophyticus (92)	0.06/0.12 -	0.25/0.5 (100.0%)	0.5/4 (88.0%) ^e	≤1/4 _ ^c	≤0.5/1 (94.6%)	16/16 (100.0%)	128/>256 - ^c	NT		

Used only or primarily for treating UTIs.

Using oral breakpoints for urinary tract infection caused by E. coli

^a MIC_{50/90} values were not determined due to small sample size.

Breakpoints not established MIC_{50/90} values were not determined due to small sample size.

Based on surrogate testing of oxacillin/cefoxatin

Table 2 Distribution of MIC values for gepotidacin against *E. coli* UTI isolate subsets with resistance to oral agents

Organism (No. of isolates)	No. and cumulative % of isolates inhibited at a gepotidacin MIC (mg/L) of:								Gepotidacin	
Drug-resistant subset	≤0.25	0.5	1	2	4	8	16	32	MIC ₅₀	MIC ₉₀
E. <i>coli</i> (1,001)	8 (0.8%)	46 (5.4%)	298 (35.2%)	527 (87.8%)	110 (98.8%)	5 (99.3%)	5 (99.8%)	2 (100%)	2	4
Fluoroquinolone - NS (213)	5 (2.3%)	25 (14.1%)	85 (54%)	64 (84%)	24 (95.3%)	4 (97.2%)	4 (99.1%)	2 (100%)	1	4
Amoxicillin-clavulanate - NS (148)	1 (0.7%)	10 (7.4%)	44 (37.2%)	75 (87.8%)	16 (98.6%)	0 (98.6%)	2 (100%)	· · /	2	4
Ampicillin - NS (444)	6 (1.4%)	23 (6.5%)	`156 (41.7%)	210 (89%)	40 (98%)	4 (98.9%)	4 (99.8%)	1 (100%)	2	4
Trimethoprim-sulfamethoxazole - NS (267)	4 (1.5%)	16 (7.5%)	110 (48.7%)	`108´ (89.1%)	23 (97.8%)	2 (98.5%)	3 (99.6%)	1 (100%)	2	4
Nitrofurantoin - NS (25)	· · ·	2 (8.0%)	11 (52.0%)	11 (96.0%)	1 (100%)	, ,	, <i>,</i>	, , ,	1	2
Fosfomycin - NS (7)		. ,	1 (14.3%)	4 (71.4%)	1 (85.7%)	1 (100%)			ND ^a	ND^{a}
Mecillinam - NS (65)	1 (1.5%)	5 (9.2%)	21 (41.5%)	30 (87.7%)	7 (98.5%)	0 (98.5%)	1 (100%)		2	4
ESBL phenotype (106)	. ,	5 (4.7%)	39 (41.5%)	41 (80.2%)	12 (91.5%)	4 (95.3%)	4 (99.1%)	1 (100%)	2	4
MDR phenotype (36)		1 (2.8%)	`14 (41.7%)	`18 (91.7%)	2 (97.2%)	0 (97.2%)	`1 (100%)	、 ,	2	2

Poster 2159 - IDWEEK 2023 October 11-15, 2022, Boston, MA

Gepotidacin (MIC_{50/90}, 2/4 mg/L) displayed good activity against 1,001 *E. coli* isolates from UTI infections, with 98.8% of all observed gepotidacin MICs \leq 4 mg/L (Tables 1 and 2).

Susceptibility (S) to comparators amoxicillin-clavulanate (85.2% S), ampicillin (55.6% S), ciprofloxacin (78.8% S), fosfomycin (99.3% S), mecillinam (93.5% S), nitrofurantoin (97.5% S), and trimethoprim-sulfamethoxazole (73.3% S) was observed (Table 1).

Gepotidacin maintained similar MIC_{50/90} values (1-2/2-4 mg/L) against drug-resistant subsets (Table 2)

Most comparator agents displayed reduced susceptibility against drug-specific not susceptible subsets while others retained activity (Table 1). The susceptibility rates were: Ciprofloxacin (24.0–78.5%), amoxicillin-clavulanate (24.6–74.2%), trimethoprimsulfamethoxazole (44.0-53.8%), and ampicillin (0.0-36.0%).

- mecillinam (66.9–93.4%).

ESBL and MDR phenotypes were observed in 10.6% and 3.6%, respectively, of *E. coli* isolates

Gepotidacin was active against ESBL-positive and MDR isolates, inhibiting 91.5% and 97.2%, respectively, at $\leq 4 \text{ mg/L}$ (Table 2).

The susceptibility rates of comparator agents against ESBL-positive and MDR isolates were:

Gepotidacin inhibited 100% of S. saprophyticus isolates at ≤ 0.12 mg/L, with MIC_{50/90} values of 0.06/0.12 mg/L.

Most oral agents showed >94% susceptibility against *S. saprophyticus* isolates, except for amoxicillin-clavulanate (88.0% S).

References

- doi:10.1021/acsinfecdis.8b00315

- doi:10.1136/sextrans-2022-055518
- Clinical and Laboratory Standards Institute; 2023

Nitrofurantoin (91.1–100.0%), fosfomycin (96.9–100.0%), and

Ciprofloxacin (25.5% and 0%), amoxicillin-clavulanate (52.8% and 22.2%), and trimethoprim-sulfamethoxazole (39.6 and 38.8%) respectively.

Nitrofurantoin (89.6% and 83.3%), fosfomycin (97.2% and 94.4%), and mecillinam (93.4% and 94.4%), respectively.

1. Gibson EG, Bax B, Chan PF, Osheroff N. Mechanistic and Structural Basis for the Actions of the Antibacterial Gepotidacin against Staphylococcus aureus Gyrase. ACS Infect Dis. 2019;5(4):570-581.

2. Bax BD, Chan PF, Eggleston DS, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010;466(7309):935-940. doi:10.1038/nature09197

3. Biedenbach DJ, Bouchillon SK, Hackel M, et al. In Vitro Activity of Gepotidacin, a Novel Triazaacenaphthylene Bacterial Topoisomerase Inhibitor, against a Broad Spectrum of Bacterial Pathogens. Antimicrob Agents Chemother. 2016;60(3):1918-1923.. doi:10.1128/AAC.02820-15

4. Wagenlehner F, Perry CR, Hooton TM, et al. P31 Efficacy and safety of oral gepotidacin in the treatment of uncomplicated urinary tract infection: results of two randomized, multicentre Phase 3 trials (EAGLE-2 and EAGLE-3). JAC Antimicrob Resist. 2023; 5(Suppl 3): dlad077.035. doi:10.1093/jacamr/dlad077.035

5. Scangarella-Oman NE, Hossain M, Perry CR, et al. Dose selection for a phase III study evaluating gepotidacin (GSK2140944) in the treatment of uncomplicated urogenital gonorrhoea. Sex Transm Infect. 2023;99(1):64-69.

6. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI Standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018

7. CLSI. Performance standards for antimicrobial susceptibility testing: 33rd ed. CLSI Supplement 100. Wayne. PA:

8. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect*. 2012;18(3):268-281. doi:10.1111/j.1469-0691.2011.03570.x