IDWeek 2023 | Poster #2117

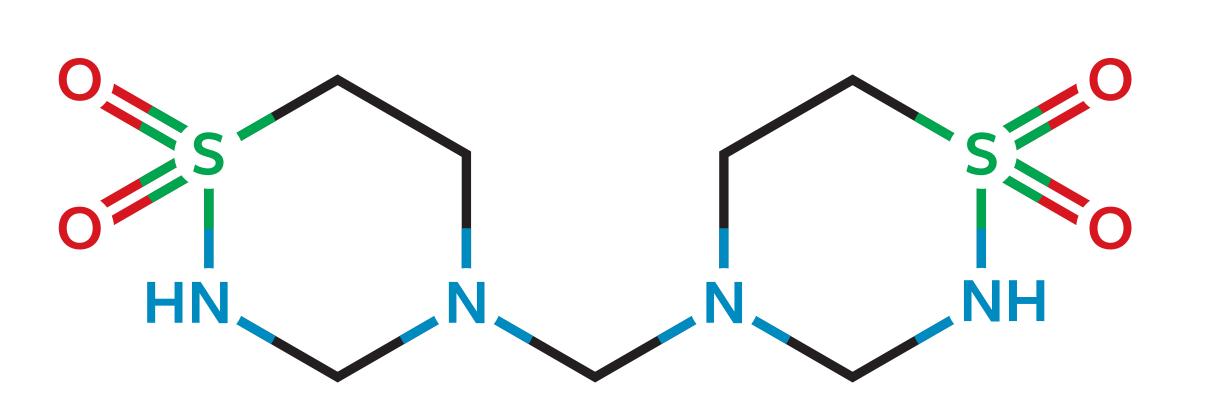
In Vitro Antimicrobial Activity of Taurolidine against Candida auris **Bloodstream Isolates from Global Sources**

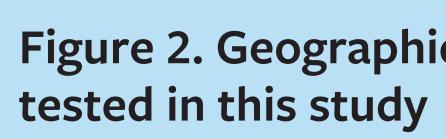
Antony Pfaffle¹, Leonard Duncan², Mariana Castanheira², Bruce Reidenberg³, Cecilia Carvalhaes², Jessica Vaughn¹, Phoebe Mounts¹

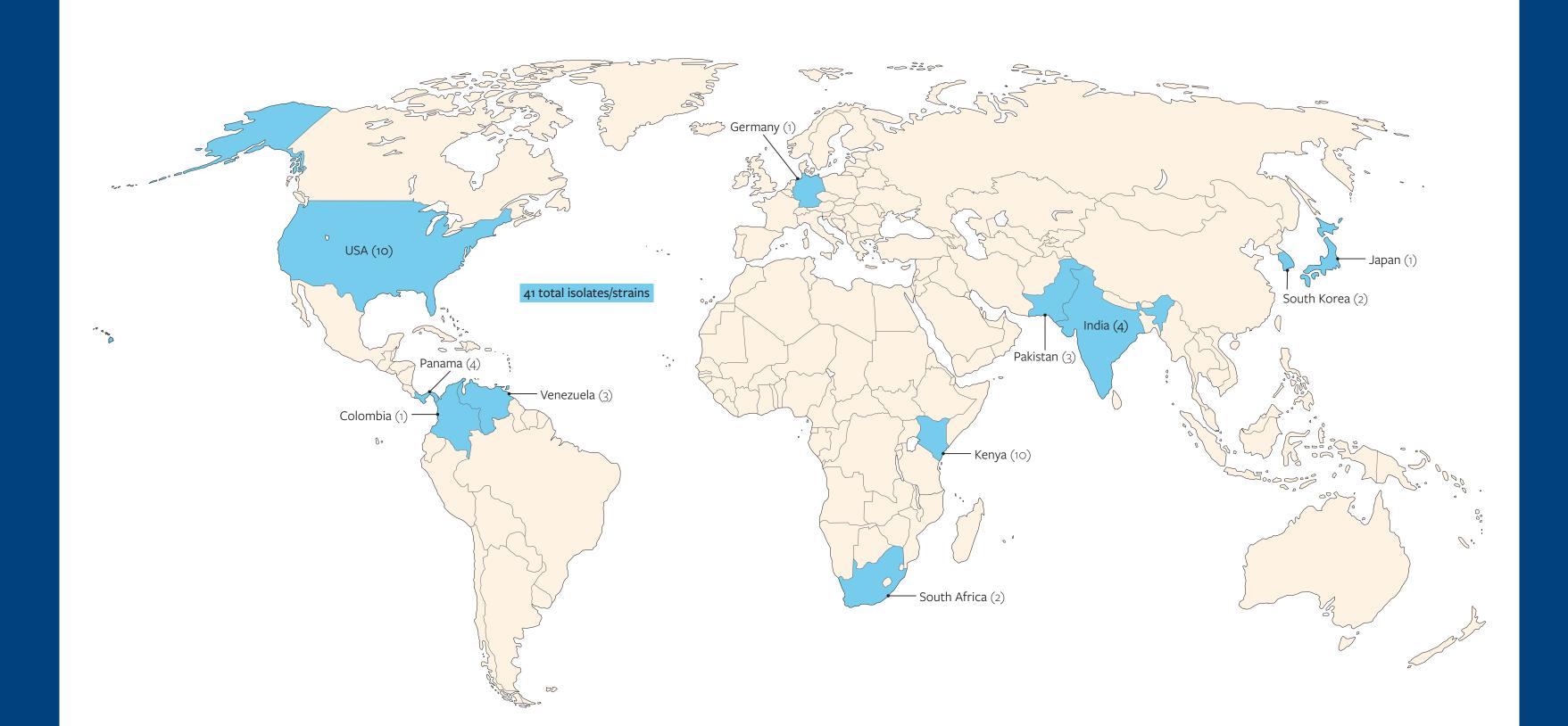
¹CorMedix Inc., Berkeley Heights, New Jersey, USA; ² JMI Laboratories, North Liberty, Iowa, USA; ³ Weill Cornell Medicine, New York, New York, USA

Introduction

- The Centers for Disease Control and Prevention (CDC) have recently warned that the fungus Candida auris is an emerging, resistant pathogen of concern [1], and recent epidemiological reports point to the increasing global spread of *C. auris* [2, 3].
- Recent reports highlight C. auris as an emerging cause of invasive bloodstream infections (BSI) [4-6].
- Central venous catheter use is associated with C. *auris* BSI [4].
- Taurolidine (Figure 1) has been marketed in Europe as a catheter lock solution component with the goal of reducing catheter-related bloodstream infections (CRBSI) [7].
- Taurolidine is a novel antimicrobial with broad spectrum antibacterial/antifungal activity and two mechanisms of action that does not lend itself to clinically relevant microbial resistance at concentrations contained within a central venous catheter.
- Taurolidine exerts its activity through damage to microbial cell walls by denaturing surface proteins and chemically altering membrane lipids, as well as inhibiting adherence of microorganisms to biological surfaces.
- A large, double-blind, randomized comparator-controlled study was conducted that evaluated the safety and efficacy of a catheter lock solution containing taurolidine/heparin to prevent CRBSIs in patients with advanced kidney disease on hemodialysis (*Clin J Am Soc* Nephrol, in press, https://journals.lww.com/cjasn/abstract/9900/taurolidine_heparin_lock _solution_and.236.aspx).
- The marketing application for use in the United States is currently under review by the United States Food and Drug Administration (US FDA).
- To provide additional evidence for the potential utility of taurolidine to reduce CRBSI, this study investigated the *in vitro* antimicrobial activity of taurolidine against a diverse set of C. auris strains/isolates using reference testing methods.


Materials and Methods


- 41 C. auris strains/isolates were collected from various sources during 2008–2019 (Table 1 and Figure 2), and the species were confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany) or other standard methods:
- The CDC and the US FDA Antimicrobial Resistance Isolate Bank (CDC AR) (n=11) [8].
- Several clades were represented (Table 1).
- The Westerdijk Fungal Biodiversity Institute (n=4) [9].
- JMI Laboratories' SENTRY Antimicrobial Surveillance Program (n=16) [10].
- A special collection of *C. auris* isolates obtained by JMI Laboratories from a hospital in Nairobi, Kenya (n=10) [11].
- Most C. *auris* isolates (90%; 37/41) were from bloodstream infections (Table 1).
- The C. auris set was tested for antifungal susceptibility using Clinical and Laboratory Standards Institute (CLSI) broth microdilution guidelines [12, 13].
- The test medium was Roswell Park Memorial Institute 1640 broth buffered with MOPS (morpholinepropanesulfonic acid) and 0.2% (w/v) glucose [12].
- JMI Laboratories produced the minimal inhibitory concentration (MIC) panels.
- CLSI-recommended quality control strains were also tested (*Candida krusei* ATCC 6258 and Candida parapsilosis ATCC 22019).
- MIC values were read after 24 hours at 35°C in ambient air.
- Taurolidine MIC values were read at both 50% and 100% growth inhibition. – No CLSI reading criteria for taurolidine have been published.
- Amphotericin B and fluconazole were also tested as control antifungal agents.
- Tentative CDC breakpoints were applied to C. *auris* [14].


Results

- Taurolidine exhibited *in vitro* antimicrobial activity against all *C. auris* strains and isolates regardless of geographic source, year of isolation, or clade (Tables 1–3). - Overall MIC_{50/90} values were 256/512 mg/L using the 50% inhibition reading criterion and 512/512 mg/L using the 100% inhibition reading criterion (Table 3).
- The taurolidine MIC range was 128–512 mg/L and 256–1,024 mg/L using the 50% and 100% inhibition reading criteria, respectively (Table 3).
- In general, taurolidine MIC values were slightly more potent when read using the 50% inhibition criterion (Tables 1–2).
- The full set of *C. auris* isolates was 53.7% resistant to amphotericin B and 85.4% resistant to fluconazole using tentative CDC MIC breakpoints (Table 3; [14]).
- (Table 4).

Figure 1. Two-dimensional structure of taurolidine

- Where applicable, MIC data for amphotericin B and fluconazole tested against these strains/ isolates agreed well with previously published data (Table 1).
 - Because these isolates were not randomly selected, however, these resistance rates cannot be extrapolated to other sets of *C. auris* isolates.
- Taurolidine maintained activity against the amphotericin B and fluconazole-resistant subsets

Figure 2. Geographical sources of *Candida auris* strains/isolates

Table 1. Candida auris isolates/strains and their associated MIC values

									AIC (mg/L)	
Collection							Tauro	olidine	Amphotericin B	Fluconazole
No.	Source	Year	Country	Specimen type	Clade ^a	Alias	(50% inhibition)	(100% inhibition)	(published MIC value)	(published MIC value)
1	CDC AR	2019	Pakistan	Burn wound	South Asia	AR Bank# 0382	256	512	1 (0.4) ^b	4 (16) ^b
2	SENTRY	2019	Panama	Blood culture			256	512	2	64
3	SENTRY	2019	Panama	Blood culture			256	512	2	8
4	SENTRY	2019	USA	Blood culture			512	512	2	>128
5	SENTRY	2019	USA	Blood culture			256	512	2	>128
6	CDC AR	2018	India	BAL	South Asia	AR Bank# 0389	512	512	2 (4) ^b	>128 (256) ^b
7	SENTRY	2018	Panama	Blood culture			256	512	2	8
8	SENTRY	2018	Panama	Blood culture			512	512	2	4
9	SENTRY	2018	USA	Blood culture			512	512	2	>128
10	SENTRY	2018	USA	Blood culture			512	512	2	>128
11	SENTRY	2018	USA	Blood culture			512	512	2	>128
12	SENTRY	2017	USA	Blood culture			256	512	2	>128
13	SENTRY	2016	USA	Blood culture			512	512	1	>128
14	SENTRY	2016	USA	Blood culture			512	512	1	>128
15	SENTRY	2015	USA	Blood culture			512	512	1	>128
16	SENTRY	2014	Colombia	Blood culture			512	512	1	64
17	CDC AR	2014	Pakistan	Blood culture	South Asia	AR Bank# 0388	512	512	2 (1.5) ^b	>128 (>256) ^b
18	Kenya	2013	Kenya ^c	Blood culture			256	512	1	32
19	Kenya	2013	Kenya ^c	Blood culture			256	256	2	>128
20	Kenya	2013	Kenya ^c	Blood culture			256	512	1	128
21	Kenya	2013	Kenya ^c	Blood culture			512	512	1	>128
22	SENTRY	2013	USA	Blood culture			256	512	2	>128
23	CDC AR	2013	Venezuela	Blood culture	South America	AR Bank# 0931	512	1024	2 (0.75) ^b	>128 (>256) ^b
24	Kenya	2012	Kenya ^c	Blood culture			256	512	1	128
25	Kenya	2012	Kenya ^c	Blood culture			256	512	1	>128
26	Kenya	2012	Kenya ^c	Blood culture			256	512	1	>128
27	Kenya	2012	Kenya ^c	Blood culture			256	512	1	128
28	Kenya	2012	Kenya ^c	Blood culture			128	512	2	128
29	CDC AR	2012	South Africa	Blood culture	Africa	AR Bank# 0383	256	512	1 (0.4) ^b	>128 (128) ^b
30	CDC AR	2012	South Africa	Blood culture	Africa	AR Bank# 0384	256	512	1 (0.5) ^b	>128 (128) ^b
31	CDC AR	2012	Venezuela	Blood culture	South America	AR Bank# 0385	512	512	1 (0.5) ^b	>128 (>256) ^b
32	CDC AR	2012	Venezuela	Blood culture	South America	AR Bank# 0386	512	512	1 (0.5) ^b	>128 (>256) ^b
33	Kenya	2011	Kenya ^c	Blood culture			256	512	2	>128
34	SENTRY	2009	Germany	Blood culture			256	512	2	128
35	CDC AR	2009	Japan	Ear	East Asia	AR Bank# 0381	256	512	1 (0.4) ^b	2 (4) ^b
36	CDC AR	2008	Pakistan	Blood culture	South Asia	AR Bank# 0387	256	512	1 (0.75) ^b	4 (8) ^b
37	CDC AR	NR	India	Wound	South Asia	AR Bank# 0390	512	512	2 (4) ^b	>128 (>256) ^b
38	Westerdijk	NR	India	Blood culture		CBS 12768 ^d	512	1024	2 (4) ^e	>128 (32) ^e
39	Westerdijk	NR	India	Blood culture		CBS 12766 ^d	512	1024	2 (4) ^e	>128 (32) ^e
40	Westerdijk	NR	South Korea	Blood culture		CBS 12372 ^d	256	512	1 (1) ^e	128 (2) ^{e, f}
41	Westerdijk	NR	South Korea	Blood culture		CBS 12372 d	256	512	2 (1) ^e	128 (16) ^{e, f}
	,				Isolate Bank: MIC minimal inhibito	bry concentration; NR, not reported.			- (')	

Abbreviations: BAL, bronchoalveolar lavage; CDC AR, Centers for Disease Control and Prevention and US FDA Antimicrobial Resistance Isolate Bank; MIC, minimal inhibitory concentration; NR, not reported. ^a Clade categorization as reported by the CDC and FDA Antibiotic Resistance (CDC AR) isolate bank [8] ^b MIC values for amphotericin B (Etest) and fluconazole from the CDC AR bank website are shown in parentheses. he Kenyan isolates are described by Adam et al. [11].

^dCBS isolates are from the Westerdijk Fungal Biodiversity Institute [9].

e 24-hour MIC values for amphotericin B and fluconazole from Larkin et al. [15] are shown in parentheses. The 48-hour fluconazole MIC values were all >64 mg/L. The fluconazole 24-hour MIC values were measured twice for strain #40 (repeat MIC value, 64 mg/L) and strain #41 (repeat MIC value, 128 mg/L).

Table 2. Cumulative distributions of taurolidine MIC values against various Candida *auris* subsets

Candida auris set		No. an	id cun	nulativ	e % of	⁻ isolat	es inh	ibited	at MI	C (mg	/L) of:			MIC
(no. of isolates)	≤0.5	1	2	4	8	16	32	64	128	256	512	1024	MIC ₅₀	MIC ₉
All Candida auris	1		1			1								
Taurolidine 50%								0	1	22	18		256	512
inhibition (41)								0.0	2.4	56.1	100.0		230	JIZ
Taurolidine 100%									0	1	37	3	512	512
inhibition (41)									0.0	2.4	92.7	100.0	JIZ	JTZ
SENTRY Candida au	ris		I		1	1	1	1	1	1	1			
Taurolidine 50%									0	7	9		512	512
inhibition (16)									0.0	43.8	100.0		JIZ	J 12
Taurolidine 100%										0	16		512	512
inhibition (16)										0.0	100.0		JIZ	J I 2
Kenyan Candida aur	ris							1						
Taurolidine 50%								0	1	8	1		256	256
inhibition (10)								0.0	10.0	90.0	100.0		230	230
Taurolidine 100%									0	1	9		512	512
inhibition (10)									0.0	10.0	100.0		JIZ	J12
CDC AR bank Candi	da aur	is	1				1	1	1	1	1			
Taurolidine 50%									0	5	6		512	512
inhibition (11)									0.0	45.5	100.0		512	J 12
Taurolidine 100%										0	10	1	512	512
inhibition (11)										0.0	90.9	100.0	512	512
Westerdijk Candida	auris					1	1	1	1	1	1			
Taurolidine 50%									0	2	2		256	
inhibition (4)									0.0	50.0	100.0		230	
Taurolidine 100%										0	2	2	512	
inhibition (4)										0.0	50.0	100.0	512	

Table 3. Activity of taurolidine and comparators against the full Candida auris set (n=41)

Antimicrobiologont			Danca	CLSI ^a			
Antimicrobial agent	1011C ₅₀	MIC ₉₀	Range	%S	%	% R	
Taurolidine 50% inhibition	256	512	128 to 512				
Taurolidine 100% inhibition	512	512	256 to 1024				
Amphotericin B	2	2	1 to 2	46.3		53.7	
Fluconazole	>128	>128	2 to >128	14.6		85.4	

^aUsing tentative CDC antifungal susceptibility breakpoints [14]

Table 4. Activity of taurolidine against resistant Candida *auris* subsets

Resistant subset ^a	No. of	mg/L					
Taurolidine criterion	isolates	MIC ₅₀	MIC ₉₀	MIC range			
Amphotericin B MIC ≥2 mg/L							
Taurolidine 50% criterion	22	256	512	128 to 512			
Taurolidine 100% criterion	22	512	1024	256 to 1024			
Fluconazole MIC ≥32 mg/L							
Taurolidine 50% criterion	35	256	512	128 to 512			
Taurolidine 100% criterion	35	512	512	256 to 1024			
Using tentative CDC antifungal susceptibility breakpoints [14].							

Conclusions

- Taurolidine activity was similar for all *C. auris* subsets tested regardless of source or clade. – Overall MIC_{50/90} values were 256/512 mg/L using the 50% inhibition reading criterion and
- 512/512 mg/L using the 100% inhibition reading criterion.
- There was no evidence that taurolidine activity was affected by resistance to amphotericin B or fluconazole.
- Based on these data, catheter lock solutions containing the broad-spectrum antimicrobial taurolidine at 13,500 mg/L have the potential to prevent CRBSI caused by C. auris, including clinical isolates that are resistant to amphotericin B and fluconazole.
- Taurolidine MIC values are being measured against additional C. auris isolates to further explore the activity of this broad-spectrum antimicrobial.

Disclosures

JMI Laboratories received compensation for services related to the preparation of this poster.

References

1. CDC, Antibiotic resistance threats in the United States. 2019, Centers for Disease Control and Prevention: Atlanta, GA. Available at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats

- 2. Lyman, M., Forsberg, K., Sexton, D.J., Chow, N.A., Lockhart, S.R., Jackson, B.R., et al., Worsening Spread of Candida auris in the United States, 2019 to 2021. Ann Intern Med, 2023. 176(4): 489-495.
- 3. Ademe, M. and Girma, F., Candida auris: From Multidrug Resistance to Pan-Resistant Strains. Infect Drug Resist, 2020. 13: 1287-1294.

4. Benedict, K., Forsberg, K., Gold, J.A.W., Baggs, J., and Lyman, M., Candida auris–Associated Hospitalizations, United States, 2017–2022. Emerg Infect Dis, 2023. 29(7): 1485-1487.

5. Koleri, J., Petkar, H.M., Rahman, S.A.S.H.A., and Rahman, S.A.M.A., *Candida auris Blood stream* infection—a descriptive study from Qatar. BMC Infect Dis, 2023. 23(1): 513.

6. Mohsin, J., Weerakoon, S., Ahmed, S., Puts, Y., Al Balushi, Z., Meis, J.F., et al., A Cluster of Candida auris Blood Stream Infections in a Tertiary Care Hospital in Oman from 2016 to 2019. Antibiotics (Basel), 2020. 9(10).

7. Reidenberg, B.E., Wanner, C., Polsky, B., Castanheira, M., Shelip, A., Stalleicken, D., et al., Postmarketing experience with Neutrolin(R) (taurolidine, heparin, calcium citrate) catheter lock solution in hemodialysis patients. Eur J Clin Microbiol Infect Dis, 2018. 37(4): 661-663.

8. CDC, CDC & FDA Antibiotic Resistance Isolate Bank website. 2023, Centers for Disease Control and Prevention. Available at: https://wwwn.cdc.gov/ARIsolateBank/.

9. Westerdijk Fungal Biodiversity Institute website. 2023: Available at: https://wi.knaw.nl/.

10. Fuhrmeister, A.S. and Jones, R.N., The importance of antimicrobial resistance monitoring worldwide and the origins of SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis., 2019. 6 (Suppl 1): S1-S4. 11. Adam, R.D., Revathi, G., Okinda, N., Fontaine, M., Shah, J., Kagotho, E., et al., Analysis of Candida auris fungemia at a single facility in Kenya. Int. J. Infect. Dis., 2019. 85: 182–187.

2. CLSI, M27Ed4. Reference method for broth dilution antifungal susceptibility testing of yeasts. 2017, Clinical and Laboratory Standards Institute: Wayne, PA.

13. CLSI, M27M44S-Ed3. Performance standards for antifungal susceptibility testing of yeasts. 2022, Clinical and Laboratory Standards Institute: Wayne, PA.

4. Candida auris Antifungal Susceptibility Testing and Interpretation website. Available at: https://www.cdc gov/fungal/candida-auris/c-auris-antifungal.html. 2023, Centers for Disease Control and Prevention.

5. Larkin, E., Hager, C., Chandra, J., Mukherjee, P.K., Retuerto, M., Salem, I., et al., *The emerging pathogen* Candida auris: Growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob. Agents Chemother., 2017.61(5):e02396.

Contact

Cecilia Carvalhaes, MD, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: cecilia.carvalhaes@element.com

To obtain a PDF of this poster: Scan the QR code or visit https://www .jmilabs.com/data/posters/IDWeek 2023_23-CMX-02_P1_Taurolidine.pdf

Charges may apply. No personal information is stored.