Comparative Antimicrobial Spectrum and Activity of BMS284756 Against 2,681 Recent Clinical Isolates of Haemophilus influenzae and Moraxella catarrhalis: Report from the SENTRY Antimicrobial Surveillance Program (2000) in Europe, the United States, and Canada

D.J. Biedenbach,* R. N. Jones, M. A. Pfaller, and the SENTRY Participants Group (Americas and Europe)

University of Iowa College of Medicine Iowa City, Iowa; and The JONES Group, North Liberty, Iowa

INTRODUCTION

The activity of fluoroquinolones against common respiratory tract pathogens including those most often associated with community-acquired pneumonia, otitis media, and sinusitis is well documented. Fluorquinolone resistance among Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae, and Neisseria meningitidis is a new and emerging issue. Although confirmed reports of fluoroquinolone resistance in H. influenzae and M. catarrhalis are rare (DPenar et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance.

The activity of fluoroquinolones against common respiratory tract pathogens including those most often associated with community-acquired pneumonia, otitis media, and sinusitis is well documented. Fluorquinolone resistance among Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae, and Neisseria meningitidis is a new and emerging issue. Although confirmed reports of fluoroquinolone resistance in H. influenzae and M. catarrhalis are rare (DPenar et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.

Conclusions: The activity of BMS284756 shows a potential greater or equal to other recently developed quinolones, against fastidious respiratory tract pathogens. Documented minimal toxicity and other pharmacokinetic profiles (0.4 µg/ml breakpoints) suggest BMS284756 is a potent therapeutic option against common Gram-negative respiratory pathogens. Although documented resistance to fluoroquinolones among H. influenzae and M. catarrhalis is rare (DPeto et al., Diagn Microbiol Infect Dis 32:131-135, 1998 and Biedenbach et al., Diagn Microbiol Infect Dis 36:245-250, 2000), studies have shown elevated cross-resistance among the BMS284756 disk (5 µg) dilution results showed acceptable categorical correlation to the broth microdilution test.