Murepavadin Activity Tested against Contemporary (2016–2017) Clinical Isolates of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa

HS Sader¹, RK Flamm¹, GE Dale², PR Rhomberg¹, M Castanheira¹

1. JMI Laboratories, North Liberty, Iowa, USA; 2. Polyphor Ltd, Hegenheimermattweg 125, CH-4123 Allschwil, Switzerland

Contact Information: Helio S. Sader, MD, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: helio-sader@jmilabs.com

obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data/posters /ECCMID2018-murapavadin-XDR -pseudomonas-aeruginosa.pdf

Introduction

- Murepavadin (formerly POL7080) is a 14-amino-acid cyclic peptide for intravenous administration that represents the first member of a novel class of outer membrane protein targeting antibiotic (OMPTA)
- Murepavadin displays a novel mode of action as it binds to the lipopolysaccharide transport protein D (LptD) in the outer membrane of the bacterium, blocks the LPS translocation, and ultimately kills the bacterium
- Given the pathogen-specific nature of murepavadin it is unlikely to generate resistance to, or negatively impact, the patient's native bacterial flora, which are unintended sequelae of treatment with broad-spectrum antibiotics
- This novel agent is being developed for the treatment of nosocomial pneumonia suspected or caused by Pseudomonas aeruginosa
- P. aeruginosa is the second leading cause of hospital-acquired pneumonia and ventilator-associated pneumonia, and one of the major causes of healthcareassociated bloodstream infections, urinary tract infections, and skin and skin structure infections
- In this study we evaluated the in vitro activity of the Polyphor compound murepavadin and comparator agents against contemporary clinical isolates of extensively drug-resistant (XDR) P. aeruginosa

Materials and Methods

Organism collection

- Organisms tested originated from the SENTRY Antimicrobial Surveillance Program
- A total of 785 isolates (1/patient episode) were consecutively collected in 2016 (n=544) and 2017 (n=241) from 75 medical centers located in North America (n=432), and 34 medical centers in 21 European nations (n=353)
- Sites of infection from which isolates were obtained included pneumonia in hospitalized patients (63%), skin and skin structure infections (19%), bloodstream infections (10%), urinary tract infections (6%), and intra-abdominal infections (2%)

Susceptibility testing

- Isolates were tested against murepavadin and comparator agents by the reference broth microdilution method using cation-adjusted Mueller-Hinton
- CLSI and EUCAST interpretive criteria were used to determine susceptibility/ resistance rates for comparator agents
- Quality control was tested daily and inoculum density was monitored by colony counts; the quality control strains were P. aeruginosa ATCC 27853 and
- P. aeruginosa strains were classified as XDR according to recommended guidelines (Magiorakos et al., 2012) and based on the following recommended parameters: susceptible by the CLSI criteria to 2 or fewer of the following antimicrobial classes
- Antipseudomonal cephalosporins: ceftazidime and cefepime
- Carbapenems: imipenem, meropenem, and doripenem
- Broad-spectrum penicillins combined with β-lactamase inhibitor: piperacillin-tazobactam
- Fluoroquinolones: ciprofloxacin and levofloxacin
- Aminoglycosides: gentamicin, tobramycin, and amikacin
- Polymyxins: colistin

Table 1 Antimicrobial activity of murepavadin, colistin, and ceftolozane-tazobactam tested against 785 XDR *P. aeruginosa* isolates from **Europe and North America**

Antimiorphial agent	No. of isolates at MIC (mg/L; cumulative %)										MIC	MIC		
Antimicrobial agent	≤0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	> a	MIC ₅₀	MIC ₉₀
Murepavadin	10 1.3	159 21.5	362 67.6	190 91.8	38 96.7	8 97.7	8 98.7	3 99.1				7 100.0	0.12	0.25
Colistin			6 0.8	41 6.0	242 36.8	391 86.6	55 93.6	47 99.6	0 99.6			3 100.0	1	2
Ceftolozane-tazobactam				3 0.4	41 5.6	295 43.2	144 61.5	71 70.6	34 74.9	21 77.6	31 81.5	145 100.0	2	>32

Table 2 Activity of murepavadin and comparator antimicrobial agents when tested against XDR P. aeruginosa isolates

Antimicrobial agent	MIC	MIC	CL	.SI ^a	EUCAST ^a				
Antimicrobial agent	MIC ₅₀	MIC ₉₀	%S	%R	%S	%R			
All isolates (785)									
Murepavadin	0.12	0.25							
Colistin	1	2	93.6	6.4	93.6	6.4			
Ceftolozane-tazobactam	2	>32	70.6	25.1	70.6	29.4			
Ceftazidime	32	>32	20.0	60.6	20.0	80.0			
Meropenem	16	>32	5.6	84.5	5.6	65.6			
Piperacillin-tazobactam	>64	>64	7.3	50.1	7.3	92.7			
Levofloxacin	>4	>4	6.9	81.1	2.3	97.7			
Amikacin	16	>32	61.6	26.8	45.5	38.4			
Tobramycin	8	>8	47.5	48.5	47.5	52.5			
North America (432)									
Murepavadin	0.12	0.5							
Colistin	1	1	95.4	4.6	95.4	4.6			
Ceftolozane-tazobactam	1	8	86.8	8.1	86.8	13.2			
Ceftazidime	32	>32	24.8	53.0	24.8	75.2			
Meropenem	16	32	6.7	80.6	6.7	58.1			
Piperacillin-tazobactam	>64	>64	9.5	50.5	9.5	90.5			
Levofloxacin	>4	>4	9.3	74.8	2.1	97.9			
Amikacin	8	>32	79.6	12.0	57.6	20.4			
Tobramycin 2		>8	67.1	27.8	67.1	32.9			
Europe (353)									
Murepavadin	0.12	0.25							
Colistin	1	2	91.5	8.5	91.5	8.5			
Ceftolozane-tazobactam	4	>32	50.7	45.9	50.7	49.3			
Ceftazidime	32	>32	14.2	70.0	14.2	85.8			
Meropenem	32	>32	4.2	89.2	4.2	74.8			
Piperacillin-tazobactam	64	>64	4.5	49.6	4.5	95.5			
Levofloxacin	>4	>4	4.0	89.0	2.5	97.5			
Amikacin	32	>32	39.5	44.9	30.7	60.5			
Tobramycin	>8	>8	23.5	73.9	23.5	76.5			

^a Criteria as published by CLSI (2018) and EUCAST (2018).

Results

- Murepavadin (MIC_{50/90}, 0.12/0.25 mg/L) inhibited 96.7% of isolates at ≤0.5 mg/L and was 8-fold more potent than colistin (MIC_{50/90}, 1/2 mg/L) based on MIC_{50/90} values (Tables 1 and 2)
- Only 7 isolates (0.9%) exhibited murepavadin MIC values >4 mg/L (Table 1); 6 isolates from the United States and 1 from Europe (Ireland)
- Among the comparator agents tested, colistin was the most active compound (MIC_{50/90}, 1/2 mg/L; 93.6% susceptible), followed by ceftolozanetazobactam (MIC_{50/90}, 2/>32 mg/L; 70.6% susceptible), tobramycin (MIC_{50/90}, 8/>8 mg/L; 47.5% susceptible), and amikacin (MIC_{50/90}, 16/>32 mg/L; 45.5%/61.6% susceptible [EUCAST/CLSI]; Table 2)
- Susceptibility rates for meropenem, piperacillin-tazobactam, and ceftazidime were 5.6%, 7.3%, and 20.0%, respectively (Table 2)

- Murepavadin was active against isolates nonsusceptible to colistin (n=50; MIC_{50/90}, 0.25/0.25 mg/L; highest MIC, 0.5 mg/L) and/or ceftolozanetazobactam (n=231; MIC_{50/90}, 0.12/0.25 mg/L; 97.8% inhibited at ≤1 mg/L; Table 3)
- Among tobramycin-nonsusceptible isolates (n=412), 99.3% were inhibited at ≤1 mg/L of murepavadin (MIC_{50/90}, 0.12/0.25 mg/L; Table 3)
- Murepavadin activity against isolates from Europe (MIC_{50/90}, 0.12/0.25 mg/L) were very similar to the agent's activity against isolates from North America (MIC_{50/90}, 0.12/0.5 mg/L; Table 2 and Figure 1)
- In contrast, susceptibility rates for ceftolozane-tazobactam and tobramycin were substantially lower among XDR *P. aeruginosa* from Europe (50.7%) and 23.5%, respectively) compared to North America (86.8% and 67.1%, respectively; Table 2)

Figure 1 Murepavadin MIC distributions for XDR *P. aeruginosa* isolates from Europe and North America

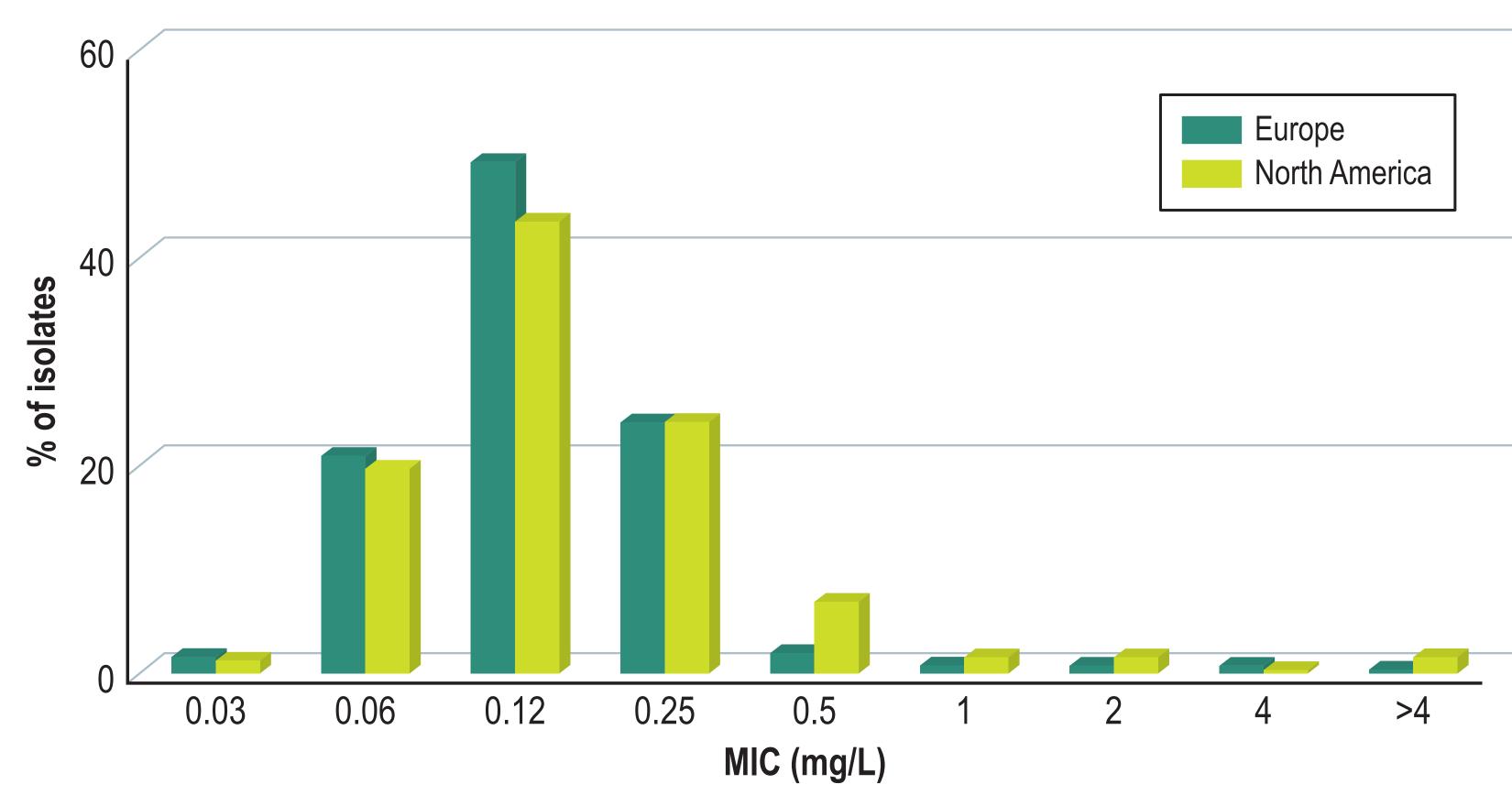


Table 3 Antimicrobial activity of murepavadin tested against XDR P. aeruginosa isolates nonsusceptible to colistin, ceftolozone-tazobactam, and/or tobramycin

Resistance	No. of isolates at MIC (mg/L; cumulative %)									NAIC .	MIC
phenotype ^a	≤0.03	0.06	0.12	0.25	0.5	1	2	4	>4	MIC ₅₀	MIC ₉₀
Colistin-NS (50)		16 10.0	16 42.0	28 98.0	1 100.0					0.25	0.25
Ceftolozane- tazobactam-NS (231)	3 1.3	55 25.1	100 68.4	57 93.1	10 97.4	1 97.8	2 98.7	0 98.7	3 100.0	0.12	0.25
Tobramycin-NS (412)	6 1.5	87 22.6	204 72.1	95 95.1	13 98.3	4 99.3	0 99.3	0 99.3	3 100.0	0.12	0.25

^a NS, nonsusceptible per EUCAST and CLS

Conclusions

- Murepavadin was very active against a large collection of clinical XDR P. aeruginosa isolates from Europe and North America
- Murepavadin retained good activity against XDR P. aeruginosa isolates nonsusceptible to colistin, ceftolozane-tazobactam, and/or tobramycin
- The results of this study coupled with results from ongoing clinical studies will define the role of murepavadin for treating *P. aeruginosa* infections, including those caused by XDR isolates

Acknowledgements

This study was supported by Polyphor Ltd. (Switzerland).

References

Armaganidis A, Franzeskaki AF, Diakaki C, et al. (2016). Pharmacokinetics of POL7080 co-administered with standard of care in patients with ventilator-associated pneumonia due to suspected or documented Pseudomonas aeruginosa infection. Abstr. 3786. 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), April 9-12. Amsterdam, Netherlands.

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src/media /PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. Accessed January 2018.

Machacek M, Renaud L, Wach A, et al. (2017). Population pharmacokinetics modeling of murepavidin (POL7080) and simulation of target attainment in a population with ventilator-associated pneumonia due to infection with *Pseudomonas aeruginosa*. Abstr. 2729. 27th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), April 22–25, Vienna, Austria.

Magiorakos AP, Srinivasan A, Carey RB, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268–281.

Martin-Loeches I, Dale GE, Torres A (2018). Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti Infect Ther 1-10. doi: 10.1080/14787210.2018.1441024 (in

Srinivas N, Jetter P, Ueberbacher BJ, et al. (2010). Peptidomimetic antibiotics target outer-membrane biogenesis in *Pseudomonas aeruginosa*. *Science* 327: 1010–1013.

Wach A, Dembowsky K, Dale GE (2018). Pharmacokinetics and safety of intravenous murepavadin infusion in healthy adult subjects administered as single and multiple ascending doses. Antimicrob Agents Chemother doi: 10.1128/AAC.02355-17 (in press)